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Abstract. We study the effects of topology on the free energy of uniform lattice animals
interacting with a surface. Topoiogy is specified by fixing an abstract graph, 7, and the
lattice animals considered are embeddings of 7 in the square and simple cubic lattice. We
prove that such embeddings in the simple cubic lattice and interacting with a plane have
the same free energy as self-avoiding walks independent of the choice of r and independent
of whether or not the embeddings are restricted to be uniform. For embeddings in the
square lattice and interacting with a line, we prove that the free energy may differ from
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that for walks depending on whether T has a cut edge. Further restricting the embeddings
to be uniform forces the free energy to be different from that for walks for all 7 (except
the r corresponding to walks) and we obtain bounds on the free energy which depend on
the number of branches, cycles and vertices of degree 3 and 4 in the graph.

1. Introduction

In 1979 Lubensky and Isaacson proposed a lattice animal model of randomly branched
polymers with excluded volume. A lattice animal is any finite subgraph of a lattice,
Since 1979 interest has developed in modelling branched polymers with specified
topologies using lattice animals (Miyake and Freed 1983, Gaunt et al 1984, Lipson er
al 1987, Soteros and Whittington 1989). The goal of such models is to predict the
effects of branching on the properties of polymers with excluded volume. Generally
the approach is to find relationships between a model of a polymer with specified
topology and the self-avoiding walk (saw) model for linear polymers. In particular,
Gaunt er al (1984) have proved that the growth constant for lattice animals on the
d-dimensional hypercubic lattice with cyclomatic index ¢ and n, vertices of degree k
{(k=3,...,2d) is the same as that for saws. Most recently Soteros et al (1991) have
proved the more general result that the growth constant for lattice animals which have
a fixed topology specified by a graph (i.e. lattice animals homeomorphic to a fixed
abstract graph) is also the same as that for saws.

Similarly, lattice animals can be used to study uniform branched polymers (every
branch is composed of the same number of monomers). Soteros and Whittington (1989)
have proved that uniform brushes have the same growth constant as saws, However,
the more general question of whether uniform lattice animals homeomorphic to a fixed
abstract graph have the same growth constant as saws remained open. In this paper
it is proved that for two and three dimensions such lattice animals do have the same
growth constant as saws. These results cannot be proved by extending the uniform
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brush proof; instead a new general argument is required. The result in three dimensions
is a corollary of a result we obtain for uniform branched polymers interacting with a
surface. The proof of the result in two dimensions is separate.

Hammersley er al (1982) have studied the properties of the free energy of saws
interacting with a surface. Recent results indicate that at least when the dimension of
the lattice is greater than 2, uniform lattice animals with specified topologies and
interacting with a surface have the same free energy as saws interacting with a surface.
This has been proved for uniform stars (Whittington and Soteros 1991), uniform
brushes {(Zhao and Lookman 1991a) and k-loops (Zhao and Lookman 1991b), In this
paper we prove that it is true for uniform lattice animals with any specified topology.
The proof of this for any topology is not an extension of the proof for the uniform
star, uniform brush or uniform k-loop case. Instead it is first necessary to obtain new
results about self-avoiding polygons (a model of ring polymers) in wedges. Then these
results are combined with some results from graph theory to obtain the final general
result. The concatenation arguments used in the proof are general enough that they
can be applied to almost any system represented by a finite number of non-intersecting
subgraphs of a regular lattice with dimension at least 3. In addition most previous
results concerning the growth constant and adsorption free energy of branched polymers
with specified topology can now be obtained as corollaries of this result.

In two dimensions, Whittington and Soteros’s results for uniform stars indicate
there is a marked difference between the behaviour of uniform branched polymers
interacting with a surface when compared to the behaviour of linear polymers interact-
ing with a surface. This is due to the fact that some of the branches of the polymer
are prevented from having any contact with the surface by other branches of the
polymer. We explore the 2D case further in this paper. Here it is shown that the result
for uniform stars generalizes to any uniform branched polymer with specified topology,
i.e. there is a shading effect which causes the interaction of the polymer to be different
from that of a linear polymer, We prove this by obtaining bounds dependent on ¢, n,
and n, for the free energy of a branched polymer with specified topology. We also
show that in the case that the branched polymer is not restricted to being uniform, the
free energy of the polymer only depends on whether the specified topology of the
polymer contains a cut edge. If the topology has a cut edge the polymer’s free energy
is the same as that of a linear polymer’s; if it does not have a cut edge the free energy
is the same as that of a ring polymer. In particular this implies that the free energy of
a dumbbell-shaped polymer is different from the free energy of a polymer shaped like
the Greek letter 8 even though ¢, n; and n, are the same for both.

The results discussed above are presented in detail in the next three sections of
this paper. In the first section we review the required definitions and required results
from the theory of saws. In the second section the proofs of the results concerning
the simple cubic lattice are presented. In the third section the square lattice results are
proved.

2. Properties of saws

We are primarily concerned with lattice animals which are connected subgraphs of
the square (Z?) and simple cubic (Z°) lattices. A subgraph of Z¢ for d =2 or d =3
is composed of lattice points, called vertices, and lattice edges. The degree of a vertex
in the subgraph is defined to be the number of edges of the lattice incident on the



Adsorption of uniform lattice animals 3155

vertex. We also assume that on Z¢ a vertex has integer coordinates (x,, ..., x,) and
we let i, be the jth unit vector.

An n-step self-avoiding walk (or n-saw) beginning at lattice point z, is an {n+1)-
tuple of distinct lattice points (z,,. .., z,} where z; and z;,, are adjacent in the lattice,
0=<i<n and the coordinates of z are (x}",..., x{"). The n-saw « is rooted if z,=0.
For each n, let ¢\ denote the number of distinct {as (1 +1)-tuples) rooted n-saws
in Z9 d=2 or 3. Then Hammersley and Morton (1954) have shown that

0<lim ntlog =k, <0 2.1

-

where «, is called the connective constant for Z°. An n-step self-avoiding polygon {(or
n-sAP) is any connected subgraph of the lattice composed of n edges and n vertices
in which each vertex has degree 2. Two saps are equivalent if one is a translate of the
other. We write p{’ for the number of inequivalent n-saps in Z*; p'¥! is zero if n is
odd so we adopt the convention that n is even in any statement invoiving p'?’.
Hammersley {1961} has shown that

(d) _

lim n""log pi =k, {2.2)

Let % represent the union of the circle graph (the connected graph with exactly
one vertex and one edge) and the set of abstract finite connected graphs with no
vertices of degree 2. We define a branch point of a graph 7€ % as a vertex of degree
greater than 2 and an end point as a vertex of degree 1. A branch is defined as an edge
or set of edges either between two branch points, two end points, or a branch point
and an end point, which does not contain any other branch or end point.

Let 4, < ¥ be the set of graphs in ¥ having maximum vertex degree less than or
equal to k. Consider 7€ %,,. An embedding of 7 in Z* will be any finite subgraph of
in Z% which is homeomorphic to . We refer to the number (n) of occupied lattice
vertices of an embedding in Z“ as the size of the embedding, and consider identical
those embeddings which are superimposable by translation.

Let g¢“)(n, r) be the number of embeddings of the graph € %, in Z7 of size n.
For instance, if = corresponds to the circle graph we write 7= = and then g'“(n, #) =0

if nis odd, g'""(n, w) = p for n even. Therefore equation (2.2) can be rewritten

lim n7'log g (n, ) =k, (2.3)
where n goes to infinity through the even numbers. If € ;4 corresponds to the graph

with exactly two vertices, each of degree 1, and one edge, then we write r=w and
equation (2.1) implies

lim n~" log g'“’(n, ) = x,. (2.4)
n—=od

Soteros et al (1991) have shown that

lirg n'log g¥(n, 7V =x, (2.5}

for any r7e %, and where n is assumed to go to infinity through even integers if
g¥(n,7)=0 for n odd. In general we define the limit, if it exists,
lim,.en'log g'*'(n, 7) to be the growth constant for 7 in Z“ Equation (2.5) thus
indicates that the growth constant for any 7€ % in Z? is the same as the growth
constant for saws in Z°.
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Since we are interested in modelling polymers interacting with a surface it is useful
to review here the results that are known about models of linear polymers interacting
with a surface. Hammersley et af {1982) modelled a linear polymer interacting with a
surface using a saw in the half-space x, =0 interacting with the surface x; =0. In
particular, let H represent the half-space x, =0 in Z9 Let c(,,‘f,l, denote the number
of distinct rooted n-saws in H? with m+1 vertices in the hyperplane L° =
{(x,...,xs)€ H?|x, =0}. Define the generating function

AP = z=0 el e™, (2.6)

Hammersley et al (1982) have shown that the limit, hereafter called the free energy,

A“(B)=lim n "' log AY(B) (27)

exists for all 8 and that
max(xy, kg +B)< A)(B) < max(xy, x4+ B). (2.8)

From this they conclude that there is a phase transition in the model (corresponding
to adsorption) for some critical value of 8, 8., where 0<B8. <k, —ky4_;-

Finally, we will need to use some known results about models of linear polymers
confined to wedges. Hammersley and Whittington (1985) modelled linear polymers
confined to a wedge using saws on Z¢ confined to a wedge. Define an (a, B, T)-wedge
for <8 to be {(x,...,x;)eZ%|0=x,, ax, =< x,< Bx,+ T}. Note that a (0, a, 0)-
wedge is equivalentto a (1/ e, oo, 0)-wedge. Hammersley and Whittington (1985) proved
that rooted saws in a (0, @, 0)-wedge in Z“ have growth constant k. Define ¢ to
be the number of rooted n-saws in an (&, 8, 0)-wedge in H> with m+ 1 vertices in L?,
m =0, and such that 0=x{" = x{" <x{™ (i=1,...,n-1). Let A™P(¢) =2} _, c2B ™™,
An argument given by Whittington (1988) which proves that rooted saws in {0, , 0)-
wedges have connective constant «; can be extended to prove that

1in;n-‘ log A%*(e) = A““(g). (2.9)

3. The results for the simple cubic lattice

In this section we prove for any graph 7 that uniform embeddings of 7 in H* inter-
acting with L® have the same free energy as saws in H” interacting with L’ To prove
the result we start by showing that it is true for the case 7= m, i.e. the case that the
embeddings are sars. We then show that saps confined to certain wedges have
the same free energy as unconstrained saws. This wedge result combined with some
graph theory allows us to prove the result for any =

First we need a few more definitions, For any set S, of vertices we define the top
{bottom) vertex as follows, First construct the subset §, = S, such that the coordinate
x, of every vertex in $, has the maximum (minimum) value over all vertices in S,. We
then recursively construct S, < S,_, such that the coordinate x, of every vertex in S
has the maximum (minimum) value over all vertices in S,_,. Let j be the smallest
integer such that S; contains precisely one vertex, and call this vertex o, (v}, the top
(bottom) vertex of S,.
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Let p,m(d) denote the number of distinct saps in H¢ with a total of m+ 1 vertices
in LY, m=0 (two polygons are equivalent if they are superimposable by translation).
Let p,..(d) denote the number of distinct saps in H* with v, in L? and a total of
m+1 vertices in LY, m =0, Clearly

pam(d)<pra(d)=cl . (3.1)

In addition, for d =2 we can define

B;(B)= T prm(d)e’™ (3.2)
m=0
and
By M(B)= T pun(d) e (3.3)
m=0
Lemma 1.
lim n™'log B}*®(B) = 11m n'log B;(B) = AP(B). (3.4)

Proof. We note that the proof in the literature of equation (2.2) is not easily extended

tha prnnf of equation ('% A\ Instead to nrave equnation (1 A.\ we note the fn]lnunng

EOLV IS Y iAol AixSiwinia, P vyuiliiaiian (. JLULL RS ¥}

Hammersley et al (1982) showed that a rooted n-saw (zU,...,z,,) in H* with z;=
(49, ..., x4 and satisfying 0= x{" = x{? < x{V (1 =1,...,n—1), 0=xP =x{" has
free energy A“(B). (In other words, saws in H? unfolded’ in the x, direction and
which return to L? at their last step have the same free energy as all saws.) They
proved this by unfolding ordinary saws so that a saw satisfying 0=x{" < x{? <x{"
results. They then concatenated in pairs unfolded walks ending at the same vertex so
as to form an unfolded walk which has its last vertex in L. We will refer to the resulting
saws as (*)-walks. M Hammersley (1987) pointed out that these {*)-walks can be
concatenated in pairs (one above L? and the other below L) to form a sap and this
construction provides an alternative proof of equation (2.2). Analogously for d =2,
one can concatenate two (**)-walks (one in the quarter-space 0=x,, 0= x,, 0 < x; and
the other in the quarter-space 0=<x,, 0= x,, x,<0) to create a sapr with its bottom
vertex in L% Since (**)-walks have free energy A®/(8) this construction implies

A®B) =lim inf n" " log B, "*(B) =<lim inf n~'log B, (B). (3.5)

Multiplying equation (3.1) with d =3 by e””, summing over m, taking logarithms,
dividing by n and letting »n go to infinity gives
lim sup n”"log B} *(B8)<lim sup n~' log B;®(B)= A®(B). {3.6)

n-+00 RO

Equations (3.5) and (3.6) give equation (3.4). O

We next look at the special case of saps in wedges and start by making some
definitions and extending some results about the growth constant for saPs and saws
in wedges to similar results for their free energies. We then prove that the free energy
of a sAP in an (a, B, T)-wedge is A”'(B).

For 1=sM=<n/2-1, d=3, define p“Md to be the number of n-SAPs in the
subset of a (0, a,O) wedge Wi ={(x.,x,...,x)ecH'|0sx, <M, O0<xs<
min{ax,, M —x,}} such that v, is the origin, v,=(M,0,...,0,1), v,+i, and v, ~1,
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are vertices of the polygon, m +1 vertices of the polygon lie in L%, m= 1, and the only
vertices of the polygon in the plane x; = M —x, are v, and v,— ;.
Let P2 represent the set of n-saps in W, Let

Bi™(e)= L puntte™ (3.7)
m=1

The argument of Hammersley and Whittington (1985) for saps in (0, «, 0)-wedges can
be extended to prove that

n/z—1
limn'log ¥ BMd(g)=Ag) d=3. (3.8)
ro M=1
Similarly, for M < n, define ¢3»" to be the number of rooted n-step saws in W4,
such that the saw ends at (M, 0,...,0), has m+1 vertices in LY, m=1, and x}" <
M—x$" for i<n. Let
AT (e)= T et e (3.9)
m=1
and
Ani(e)= Y AM(e). (3.10)

M=1

The argument of Whittington (1988) for saws in (0, a, 0)-wedges can be extended to
prove that

lim n ' log A¥()=A""(&) d=2,3. (3.11)

n=>0x

For d =3, concatenating an n,-step sap in Wy, to an n,-step sap in Wi, by
superimposing two vertices of each and deleting two edges leads to

Myd e M, . d . ol

P21Tn11 pf:z?f"zzd = pﬁlf’]':f‘;:ml*'mz = p‘:lrh:x%"mz. (3‘ 12)
TW an =
neincce

BN () B (e) < (¥ ma+ 1) BTV e). (3.13)

Further, for 0 <a < B
pRim=pRi (3.14)
and hence

B?\‘,M'd(e)ﬁB%M'd(E)- (315)

Lemma 2. Given any positive numbers a and 8, let T=[a]+1 and a« <g. Define
P2 to be the number of n-saps in an (a, B, T)-wedge in H> with v,=(0,0,0) and

H

m+1 vertices in L>. Let B%?(g) =X 0o p2% ¢ then if either o or 1/a is an integer

lim n™' log B2#(e) = A®(e). (3.16)

n=—»o0
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Proof. Hammersley and Whittington (1985) have proved that saps in a (0, «, 0}-wedge
have growth constant ;. They concatenated polygons in snug boxes to get a lower
bound. For this lemma, instead of a snug box we use a new construction involving
snug (0, 8, 0)-wedges, W5,.

Let p}* be the number of n-saps in a (a, %, 0)-wedge in H* with v, at the origin
and v, in the line {x,=ax,, x;=1} and m+1 vertices, m =0, in L*>. We start by showing
that such (**)-polygons have free energy A>(8).

Let N be such that N is an integer and both « N and N are even. Let M be such

that «M is an integer. One can concatenate a polygon in the set 2%/, to a polygon

in the set P55 to create a polygon of size (a +1) N —2 which starts and ends on
the plane x, = ax,. The concatenation is done by rotating and reflecting the (0, 1/, 0)-
wedge, W2 so that it is an (a, o, 0)-wedge, then reflect the (0, @, 0)-wedge, Wi,
through the x, and x, axes, and finally translate the wedges so that they intersect at
the plane {x,, aM — x,, x;). Deleting an edge in each polygon creates one polygon of
size (¢ +1)N —2. Two edges can be added to the top of this polygon to give a polygon
of size (@ + 1)} N. The resulting polygon is in the union of two wedges {see figure 1),
W, and WY3, for I<M=<N and 1<=aM<aN, Any sap created this way is a
{**)-polygon. Therefore
PR Pl S pEE Ly Numy oy
‘-‘—P?a++;)N,ml+m2 (3-17)
and hence, for any M such that M is an integer
B (e) B () s ((a+ )N +1)BER ) n(s)
=((a+1D)N+1)BL n(e) (3.18)

where
Y p¥te™=Bi(e) {3.19)
m=0

A subadditivity argument shows that lim, ... n~ ' log B¥*(e) exists.
Let § =max{a, 1/}, so that 0<1/8=48. Equation (3.15) implies

B},{,S’M’d(E)SBi’nM'd(E)- (3.20)

{0,aM,0) (M, aM,0)

:
Wcr M

Figure 1. The union of a WY and a W, wedge as
needed for the proof of lemma 2 is shown here as
its projection in the x* =0 plane.

(0,0,0)
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If=aletn=Nand m=M in (3.18). f § =1/ let n=aN and m = aM in (3.18).
(Note that, as long as & is an integer, m can take on all integer values between 0 and
n/2—1.) In either case equation (3.18) becomes

By™(e) By " ey < ((6+1)n+ 1)BEY ).(e)
<((8+1)n+1}B5a(e). (3.21)
Equations (3.20} and (3.13) thus give for & an integer
[BY/*™(e)]* < ((8+1)n+1) B ()
<=((8+1)n+1)Bia(e) (3.22)

For any n there are n/2—1 possible values of m and hence there exists 0 <m* =<
n/2—1 such that
. s a/2-1 glism3
eyl TR 3.23)
(g) n/2—1 (3.23)
Let m =m* in equation (3.22) and thus equation (3.23) implies

[zn,fz -1 Bl,"ﬁ ,m,3

nj2-1 ] =((8+1)n+1)Bya(e)

<((8+1)n+1)Biha(e). {3.24)
Taking logarithms, dividing by (6 +1)n, and letting n go to infinity in equation (3.24)

gives
lim n~ ' log B¥*(e) = A®'(e). {(3.25)

In other words, if either 1/« or « is an integer then saps which have p, at the origin
and o, in the line {x,=ax;,x;=1} in a (a, o0, 0)-wedge in H’ have the same free
energy as saws in H>. (Equivalently, saps which have v, at the origin and o, in the
line {x,= ax;, x; =1} in a (0, a, 0}-wedge in H* have the same free energy as saws in
H)

Given n, let xf =k [1/a] for some k and assume x¥= [n/2(8—a)]. An (a, 8, T)-
wedge can then contain any n-step (¥*)-polygon translated so that v, is at a lattice
point of the form (x,, ax,, ) for x;,=xT. Hence as many (**}-polygons of size n as
one likes can be concatenated and contained in the wedge. The (**)-polygon with
vy =(x¥, ax¥, ®) can be connected to the bottom vertex of the (a, 8, T)-wedge by

concatenating the following polygon:
o= {#l3, k( [a]ﬂz, “/a]ﬁﬂ —dy, k(- [a]ﬁ2, _“/a]ﬁl)}-

Let A be the number of vertices in 7, and hence m, has A/2 vertices in L

Concatenate r (**)-polygons each with n=(a+1)N vertices m+1 of which are in L’
and then concatenate 7,. This results in a polygon in an (a, 8, T)-wedge with A+ m
vertices, A/2+ rm of which are in L*. Hence

«, 4+
[P;ri:.fn]rspnr'-akA,rm—l+A,"2£'pnr+A,rm—l+A/‘2 (3.26)

and by Hdlder’s inequality
[B}*(e)]' s (n+1)"" Z (par) e (3.27)

Thus equations (3.25), (3.4), (3.26) and {3.27) imply (3.16). O
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We now show how to use the above lemma to prove that uniform embeddings of a
graph in H’ have the same free energy as saws in H’>. We first must define how the
polymer is attached to the surface and we consider two possible cases. In the first case
each branch of the polymer has at least one contact with the surface (however, we do
not specify where the contact is). In the second case the whole polymer is only required
to have one contact with the surface and again we do not specify where the contact
is made. The results presented here can be easily modified to apply to the case where
the location(s) of the initial polymer contact(s) with the surface is(are) specified.

For any 7€ %; let f be the number of branches in 7, ¢ its cyclomatic index and n;
the number of vertices of degree i, i #2. Define g**(n, m, 7} to be the number of
uniform embeddings of 7 in H’ with n edges in each branch and m + f vertices in L’
such that one vertex of each branch is in L. Define g*(n, m, 7) to be the number of
uniform embeddings of = in H* with n edges in each branch and m +1 vertices in L
m =0. Define AL (7, B)=2_, 87 (n, m, 7) e®™ where N = nf — ¢+1 is the total num-
ber of vertices in a uniform embedding of r. Define A% (7, 8)=2N_,27(n, m, 7) ™.

Note that the result of Hammersley er al (1982) is for saws rooted at the origin.
We will need to show that their result also applies to undirected saws (i.e. embeddings
of 7= w) not necessarily rooted at the origin but with at least one vertex in L”. In fact
it is straightforward to obtain upper and lower bounds for g*(n, m, w)=g" " (n, m, w)
in terms of ¢}), and such bounds lead to a proof of the following lemma.

Lemma 3.

lim N~ log A% (w, 8)=1im N7 " log An(e, B)=A"(B) (3.28)
where N=n-+1.
Now we can obtain the main result of this section.

Theorem 1. For any e %,
lim N~ 'log AN (7, B) = A®(B) (3.29)

with N =nf —c+1 and where if 7 is not bipartite (two-colourable} the limit is taken
through even values of n only.

Proof. From lemma 4.1 in Soteros et af (1991}, there exists an embedding of a graph
rin Z* if and only if 7€ %,. Furthermore, since SAPs in H? must have an even number
of edges a graph r€ % can have a uniform embedding in H® with » edges in each
branch, n odd, if and only if 7 has no cycles of odd length. Thus r has a uniform
embedding in H® with n odd if and only if 7 is bipartite (two-colourable) by Kénig’s
theorem (see e.g. Roberts 1984). We first consider n even and prove equation (3.29)
assuming the limit is taken only through even values of n. This will prove the theorem
for the case that 7 is not bipartite. Then we consider a construction which is only valid
for 7 bipartite and which allows us to prove the theorem for bipartite .

Regardless of whether n is even or odd, an upper bound for AL'(7, B) can be
obtained using independently embedded « graphs. Thus we focus on obtaining a lower
bound.

In order to obtain a lower bound for Ay’ (7, 8}, we construct uniform embeddings
of v in H? with n edges in each branch. If # is even the construction consists of first
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finding an embedding of 7 satisfying certain properties. Then we concatenate polygons
in wedges to the embedding of r to create new embeddings of =

A modification of the proof of lemma 4.1 in Soteros et al (1991), allows us to show
that given any 7 € %, there exists an embedding of 7 in Z* with the following properties:

(i) exactly one edge of each branch of 7 lies in the rightmost {maximum x,-
coordinate) plane, say x, = k, of the embedding. These rightmost edges lie in the line
x3=0, x, =k, x,20;

(ii) each branch has an even number of edges (just divide each existing edge on
the lattice into two edges); and

(iii) the edges in the line x, =0, x, =k are at least f edges apart, where f is the
number of branches of 7.

Given any 7€ %, find an embedding 7 of 7 in Z° satisfying these three properties.
The edges of 5 in the rightmost plane are of the form {v, v+ &,}. Represent such an
edge by the vertex v. Now label the vertices v, representing edges, and the vertices of
degree 1 in the rightmost plane of » with the numbers 1, ..., fin an order that increases
with their x, coordinates. This labelling also gives a labelling of the branches of 7.

Suppose 1 has M, edges (note that M; will be an even number because of the
subdividing of the lattice) in the ith branch and m¥ vertices (not including branch
points) in L?, Let m, be the number of branch points in L’

Divide the quarter-space to the right of % into f disjoint wedges. Place a (0, 1, 0)-
wedge at v;, a (1,2, 2)-wedge at v,,...,a (i i+1,i+1)-wedge at v,.;,..., and a
(f—1,f, f)-wedge at vy.

Concatenate to v; an (n — M;+2)-step sap in the ith wedge which visits L* m;+1
times and contains the edge {v;, v, + i,}. Delete the edge {v;, v, + d,}. If v, is a vertex
of degree 1, also delete v; + i, and the edge containing it. This creates an embedding
of r with n steps in each branch and with m+ f=m,+3/_, (m*+m,) vertices in L*.
Thus

;oo
[T pvlisam(3)sg " (n,m ). (3.30)
i=1

Multiply both sides by e”{‘l"'f, sum over ism={(n—M;+2) fori=1,...,f take
logarithms of both sides, divide by N=nf—c+1 and let » go to infinity. Lemma 2
and equation (3.30) then imply

APY(B)=lim inf N™"log AV (7, B). (3.31)

For an upper bound, we fix a labelling of the branches and vertices of 7 and then
note that each labelled uniform embedding of 7 with n edges per branch and m+ f
vertices in L' (at least one in each branch) can be separated into fn-step @ graphs
(each with at least one vertex in H’) so that the number of vertices in L* adds to m.
Since the number of ways to label the branches and branch points of an embedding
of 7 is bounded above by f127, this gives

.r'
g (n,m )= 12T 11 g"(n, my, w). (3.32)
m; j=1
The prime on the summation indicates that the sum is over 0sm;sm fori=1,...,f

such that ¥ | m; = m. Hence equation (3.28) implies

lim sup N™'1og AN (7, B)= AY(B). (3.33)
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Thus the theorem is proved in the case that the limit is taken only through even values
of n, i.e. for r which are not bipartite.

Suppose now that 7 is bipartite. This means that we can iabel the vertices of r with
two labels (high and low say) so that no two vertices having the same label are joined
by an edge in 7. Let n,, be the number of low vertices and hence f—c+ 1—n is the
number of high vertices. Arbitrarily place the low vertices along the line x;=1, x, =1
so that their x, coordinates differ by at least 7. Given an integer r, place the high
vertices arbitrariiy along the line x;=r, x, =1 so that their x, coordinates differ by at
least 7. Since all branches of 7 are between a low vertex and a high vertex, clearly r
can be chosen so that an embedding of = in H* can be obtained by adding edges to
join appropriate low and high vertices. Furthermore, this construction can be done so
that there exists a plane x; =j which intersects each branch of the embedding exactly
once and so that the embedding is to the left of the plane x, =1 and so that the number

f adasc in annh heanah ic .«\AA Call tha e mbadAdr Af - T! Thara aea hanaa
1 CGEYS5 11 £aln oTandci 15 64, Lan id lUDulLlllB \.Luucuuulg GI 7 i . 1408Te are néfice

f vertices of T" in the line x, =}, x, =1, label these v, ..., v,_, according to the value
of their x, coordinates such that v, has the smallest x, coordinate. This labelling also
provides a labelling for the branches of T'. We can now concatenate a SAp to each
edge v+ ii; to create a new embedding n of r with properties (i) and (iii) as above
but now with an odd number of edges in each branch. The proof now proceeds exactly
as in the non-bipartite case except that now n andthe M., i=1, ..., f are odd numbers.

Thus the theorem is proved for all . O

]

Corollary 1. For any 7€ %,
lim N~ og A (7, B)= AV (B) (3.34)

where if 7 is not bipartite the limit is taken through even values of n only.

Proof. To prove this corollary, first note that g*"(n, m, 7)< g*(n, m+f~1,7) and
hence equation (3.29) implies

A‘3](,B)<11m inf N” Yog A%(r, B) (3.35)

with the required restriction on r if 7 is not bipartite.
To obtain an upper bound we again separate a labelled embedding of = in H” into
f n-step w graphs. This gives the following upper bound:

ginmr)<g (n,m~f+1,7)

min{/—1,m+1}

+ T f2g(n w)]f"‘(

k=max(1,m/n}
L

lim sup N™'log A% (7, B)= A®'(B). (3.37)
Equations (3.35) and (3.37) imply equation (3.34). O

Let g*(n, 7) be the number of uniform embeddings of 7 in Z* with n edges in each
branch. Aq(7,0)<g"(n, 7). An upper bound for g"(n, 7) is obtained by separating
embeddings of 7 into independent w graphs. Hence corollary 1 and equation (2.1)
give the following corollary,
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Corollary 2. For any r€ %,

lim N7 'log g*(n, 7) = ;. (3.38)

n—+oc

Consider T as defined in lemma 2 and let g**#(n, m, 7) be the number of uniform
embeddings of 7 in an (a, 8, T}-wedge in H’ with v,=(0,0,0), n edges per branch
and m+1 vertices in L’. Gaunt and Colby (1990) have shown that uniform stars in a
wedge have the same growth constant as saws. It is now possible to show that this
generalizes to uniform embeddings of any graph r and in fact it is possible to prove
.the following corollary (for details of the proof see Soteros 1991).

Corollary 3. If either @ or 1/« is an integer

limn'log ¥ g7*(n,m, 1) e = A% (¢). (3.39)

=0 m=9

Leta*(n, m, ¢, ns, ..., ng) be the number of uniform lattice animals in A with n edges
in each branch, m + 1 vertices in L?, m =0, cyclomatic index ¢, and n; vertices of degree
i=3.Let a”"(n, m,c, n,...,ns be the number of uniform lattice animals in H> with
n edges in each branch, m +f vertices in L’ (at least one in each of the f branches),
cyclomatic index ¢, and n, vertices of degree i=3. N=nf—c+1 will be the total
number of vertices in either case. An upper bound for a' " (n,m ¢ n,, ..., ng)
(a"(n,m, e, ns,...,n)) is easily obtained as in the proof of theorem 1 {corollary 1)
by embedding f n-step w graphs. In addition, for any 7€ %, such that r has cyclomatic
index ¢ and vertex degrees {ni,...,ns), g (n,mrysa (n,mcny,..., ng)=
a'(n,m+f—1, ¢ ns,...,ns). Hence we obtain the following corollary.

Corollary 4 (Zhao and Lookman 1991a) For any ¢ and (n,, ..., 1)

n—-co

N
lim N 'tog ¥ a*“(n,m, c ns,...,ng) e
m=0

N
=lim N'log ¥ a*(n,m, ¢ ny,...,n) e =A% (B). (3.40)

w0 m=9

For any r< %, consider the number of embeddings of 7 (not necessarily uniform} in
H? of size n, with m+1 vertices in L*, m =0, and denote this by g"'(n, m, 7).

Corollary 5. For any 7¢ %,

limn'log ¥ g¥(n, m, )e’"=A(B). (3.41)
m=0

H=+0O

Proof. The proof of this follows the proof of theorem 1 except now one need only
concatenate one polygon into the quarter-space to the right of the initial embedding.
This gives a lower bound and as usual the upper bound is obtained by separating
embeddings into independent @ graphs. O
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Let a(n, m, ¢, n5,..., n;) be the number of lattice animals in H> with n vertices,
m+1 vertices in L’, m =0, cyclomatic index ¢, and n; vertices of degree i=3. Let f
be the number of branches. An upper bound for these is easily obtained as above by
embedding f n-step w graphs. In addition, for any 7€ %, such that 7 has cyclomatic
index ¢ and vertex degrees (n;,..., ne), g3{n, m, r)<a(n, m, ¢ n,,..., ne). Hence we
obtain the following corollary.

Corollary 6. For any ¢ and (n,, ..., ng)

'an;lo n'log ¥ aln,mcn,,..., ne e’ =A"(B). (3.42)

m=0

4. The square lattice results

In the previous section, theorem 1 and corollaries 1, 5 and 6 indicate that the free
energy for embeddings interacting with a surface in H” is independent of the specified
topology and independent of whether the embeddings are uniform (theorem 1 and
corollary 1) or unrestricted (corollaries 5 and 6). However, for d =2 the results are
not independent of topology and the results for uniform embeddings are quite different
from those for unrestricted embeddings. Since the results for unrestricted embeddings
are easier to obtain we start this section by looking at this case and then consider
uniform embeddings.

First we need to determine which graphs have embeddings in Z 2. Since non-planar
graphs are not embeddable in Z* not all graphs in %, have embeddings in Z*. However,
if %, is the subset of %, consisting only of planar graphs then for any graph r€ %,
there exists an embedding of 7 in Z>. In particular an embedding of 7€ %, can be
constructed so that given a labelling of the branches of = with the integers 1,...,f
and an integer j, 1=<j<{, there exists an embedding of r in Z? such that:

(i) the embedding is confined to H?;

(ii) the jth branch of = contains the top vertex of the embedding and the top
vertex, v, is cither in L? (if the jth branch ends in a vertex of degree one) or v,—ii,
is in L%

(iii) there exists a line x; = k which cuts every branch of the embedding exactly
twice and the vertices in this line are at least 2f edges apart, where f is the number
of branches of 7.

If 7 is a tree the result can be proved following an argument similar to that of the
proof of lemma 4.1 in Soteros et al (1991). For 7€ 4, with cyclomatic index ¢ >0, we
find the appropriate embedding as follows. There exist ¢ edges of 7, e,,..., €, such
that when they are cut the resulting graph is a tree. Let n, be the number of vertices
of degree 1 in 7. Consider the graph v € 4, which is obtained from 7 by cutting the
edges e,,..., e, so that 9 is a tree and has n,+2¢ vertices of degree 1. Consider any
planar embedding of 7 in R?. Cutting the branches corresponding to e,, ..., e in the
embedding gives a planar embedding of 7 in R”. We use this planar embedding of n
to define a labelling of the branches of 7. The branches are labelled so that when the
construction of lemma 4.1 of Soteros ef al (1991) is applied to obtain an embedding
of n in Z* the resulting embedding can be extended to an embedding of 7 in Z*
satisfying properties (i)-(iii) above. For more details of this construction see Soteros
{1991}.

Now that we know how to construct an embedding for any 7€ ¥, we get the
following result.
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Theorem 2. For any r¢ 6,
lim n™' log g'¥(n, 7) = .. (4.1)

n—+0o0

The proof of this follows the proof of equation (2.5) except that the lower bound is
now obtained by starting with an embedding of  in Z7, 0

Now, for any 7€ %,, consider the number of embeddings of r (not necessarily
uniform) in H* of size n with m + 1 vertices in L, m = 0, and denote this by g®(n, m, 7).
We ask how the free energy function obtained from g'*’(n, m, r) depends on r. For
d =3 the answer to the analogous question is that the free energy is equal to that for
saws (corollary 5) independent of the choice of r; for d =2 we find the free energy
depends on the choice of .

As in the previous section, we start by looking at the case r= 7 and hence the
embeddings are saps. We can prove that the free energy for saps is not always equal
to the free energy for saws. The proof of this is similar to that given in Whittington
and Soteros (1991) for uniform 3-stars in Z*; however, in this case we can prove the
existence of the free energy. _

To show that the free energy exists, let p),, be the number of distinct polygons in
H? with m+1 vertices in L? two of which are v, and v,— ii,. For these polygons

Pf,kpﬁ,jgpﬁ+m,k+j (4.2)
and this implies that
BY(B)BL(B)=(n+m+1)B}, .(8) (4.3)

where BX(8)=2)_qp% ., e Thus by the theory of subadditive functions the free
energy function for these polygons will exist, call it B{3}, and hence

B()=lm 3 n”'log BI(8). (4.4)

We now show that all saps with at least one vertex in L? have free energy B(B8).
The result is the following.

Lemma 4.
lim n~"log B}*¥(B8) =lim n™'log B;¥(8) = B(B) (4.5)

with B:*® and B.Y as in equations (3.2) and (3.3) respectively.

Proof. Since p¥, =< p,+(2) and since polygons with v, in L? can be concatenated in
pairs (according to the x, coordinate of 1) to form polygons with v, and v,— 4, in L*
one can show that

nfa—1

B(B)=1im n"'log B;"¥(B)=Ilim n"'log ¥ pin(2)e’" (4.6)
n—+co n--oo m=0

Hammersley and Whittington's (1985) argument concerning sars in wedges yields an
upper bound for all saps in H? in terms of saps in a (0, a, 0)-wedge with v, in L.
Thus by extending their argument one can cbtain an upper bound for p;, (2) in terms
of p;+(2). Further, since p,.(2) < p; ,(2), it can be proved that

n/2—1

B(B)=1lim n"'log B;**(B) = lirg nlog ¥ pia(2)ef" (4.7
n— n- m=0

O
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Now that we know the free energy, B(B), exists for saps we can ask how it is
related to the free energy for saws, A”(8). We show in fact that there exists 8o> 0
such that for all 8= B8,, B(B)< A?(B) while for 8 <B,, B(8)=AD(B)=«,.

For d =2 the maximum number of vertices a polygon can have in L* is n/2. Let

F(2) =232 pin(2). For =<0,

pala2) e = pi3(2) e < BIT(B) = BT (0) = p 7 (2) (4.8)

The first inequality on the left comes from the fact that any polygon in H” with v, in
L? can be translated up by #, and then converted into a polygon with exactly two
vertices in  L? {(add the following edges and corresponding vertices, {vy, vy, — 4},
{vp— iis, v, — Gp+ i}, {vy— i+ 4, v+ i, } and delete {v,, v+ i,}). Thus for all 8=0,
B(B)=x,.

For 8 >0, B?(0)< B?(B) and

aln/2-1)8 p++(2)(n\. Attty aln/2- 1).6
~ = aip I A T

——
o~
O

T

Thus for all 3,
max(x, B8/2)< B(B) <max(x,, x;+ $/2) (4.10)

and for sufficientiy large B8 the upper bound here is smaller than the lower bound in
equation (2.8) for A’(8). Thus for sufficiently large 8, B(8) < A”’(8). Furthermore,
equation {4.10} implies that B(8) is non-analytic and hence there is a phase transition
in the model for some By, 0= By = 2x,. Since the free energy for saps is bounded above
by the free energy for saws 8, = 8. and hence the adsorption temperature (proportional
to 1/8) for saps is at least as low as that for saws. O

Now that we have characterized the free energy for saps and the free energy for
saws and the relationship between them we can ask if there is a relationship between
the frec energy for embeddings of a graph 7 and either B(8) or A®(8). The answer
for the case that the embeddings are unrestricted is as follows.

Theorem 3. Consider any r¢ 4,. Let A,(r, 8)=25_, g (n, m, 7) €*™. If 7 has a cut
edge,

lim n “Tlog A, (7, B) = A*(B). (4.11)

Depending on 7 the limit may be taken through only even values of a.
If = does not have a cut edge then

lim n~"log A, (7, B) = B(B)- (4.12)

Proof. Suppose T has a cut edge Therefore the edge can be cut and 7 can be separated
into two graphs, 7, € ‘sp and 7€ ‘SP, each of which has a vertex of degree 1, v, and »,
respectively, such that when they are joined 7 is formed. Find an embedding 7, of =,
in Z* satisfying properties (i)-{iii) and so that v, =v,. Find an embedding », of r, in
Z? satisfying properties (i)-(iii) and so that v, = v,. Suppose %, has M, vertices m, of
which are in L? and 7, has M, vertices m, of which are in L?. Concatenate to v, the
first step of an (n ~ M, — M, + 1)-step (*)-walk starting and ending in L? and with m + 1
vertices in L2 Translate and reflect 7, so that v, can be concatenated to the last step
of the walk. The result is an embedding of 7 of size n with M =m, + m2+ m — 1 vertices
in L2 Denote the number of n-step (*)-walks with m + 1 vertices in L* by ¢ ,.(2). Hence

thMl—M2+l,m(2)sg(2)(ns Ms T)' (4‘13)
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An upper bound can be obtained by independently embedding walks for the branches
of .
Suppose 7 does not have a cut edge. In the special case that all branch points of
7 are degree 4 then 7 is Eulerian (i.e. there is a chain which goes through every edge
of r exactly once and returns to where it started). Let ny be the number of branch
points of r. Each branch point will be traversed twice by the Eulerian closed chain
and r can thus be separated into a set of cycles none of which share an edge of 7. Let
k be the number of cycles. Hence an upper bound for g(n, m, 7) can be obtained
by embedding k independent polygons such that the jth polygon has 4=n <
{n+n,—4k) vertices, 0=<m;<n/2 of which are in L’ with 2, n,=n+n, and
E};l m; =m+1. Therefore
lim sup n”'log A, (7, B) = B(B). (4.14)

n—+co

A lower bound for g'¥(n, m, 7) can be obtained in terms of polygons as in the proof

of corollary 5. This gives
B(B)=<lim infn"'log A,(7, B8). (4.15)
n-co

Equations (4.15) and (4.14) imply equation (4.12).

Suppose that 7 does not have a cut edge and is not Eulerian. In this case equation
(4.12) still holds. To prove this, note that any embedding of = in H® will have a
boundary which forms a connected subgraph of = and is Eulerian. The branches not
in the boundary cannot have more than two vertices (their branch ends) in L° Let F
be the set of Eulerian subgraphs of = and for any B define b(8)=max{e? 1}. Hence

fimf,+
A B)= T ¥ An(n, BYf— 1) 25 1 g%(m;, w)b(B) (4.16)

g m,

where the prime on the summation indicates that the sum is over all 1< m; = n for
i=1,...,f.~f,+1such that Z{;‘{’r“ m;=n+f —f,+tc —c,, f and ¢, are respectively
the number of branches and cycles in 7 and f,, and c, are the number of branches and
cycles in %. There are

(n+f,—fﬂ+c1.—cn—l)
ff_fn

terms in the primed sum. Let #™ be the value of % for which the primed sum is maximal
and let {m¥, i=1,...,f,—f,»+1} be the set of m; for which the general term in the

primed sum is maximal. We then get an upper bound on the right term in equation
(4.16) and thus

An(‘r,B)s_|g'|("+ﬂ—f,,.+c,—cﬂ*_1)

f:a'—fn*
Rl
X Ap(n*, BY = f 012575 13(2)("1?,‘0)5(.3)- (4.17)
i=2

Taking logarithms, dividing by n, letting n—> o and using equations (4.14), (4.1) and
(4.10) gives

lim n~'log A,(7, B)=< B(B). (4.18)

This along with equation (4.15) implies equation (4.12). Thus the theorem is
proved. ;|
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If now the topology of the polymer is only specified by the cyclomatic index and
degree indices instead of by a specific graph r then we get the following result. Let
a(n, m, ¢, ny, ny} be the number of lattice animals in H* with n vertices, m+1 vertices
in L*, m=0, cyclomatic index ¢, and n, vertices of degree i = 3. This case is analogous
to the case discussed in corollary 6 for d =3; however, in two dimensions the results
depend on 7.

Corollary 7. Consider any ¢ and (n;, n,} and animals restricted to H?Z, If either ny>0
or ¢ # ny+1 and if there exists a 7 € 9§, with cyclomatic index ¢ and degree set (n;, n4),
then

lim n"'log ¥ a(n, m, e, ny,n,)e®™ = A2 (B). (4.19)

norao m=0

If c=n,+1 and ry=0 then

lim n™'log Y a(n, m,c0, ny) e®” = B(B). (4.20)

m=0

Proof. The proof of this relies on the fact that if ¢ # n,+ 1 then either n, =0 or #,> 0.
In either case there is a 7€ %, with cyclomatie index ¢ and vertex degree set (n;, n,)
which has a cut edge. (In particular, if n, =0, n,=0, then we must have n;=2{(c—1)
and f=3(c~1) and a graph which satisfies this is formed by an alternating chain of
circles and lines starting and ending with a circle so that the simplest case {(¢=2) is
the dumbbell graph. If #,=0, n,>0 then n;=2(¢—1)—2n, and f=3(c—1)—n, and
such a graph can be obtained from the alternating chain just described by removing
n, of the lines.) One can thus obtain a lower bound for a{n, m, ¢, ny, n,) as in the
...............
graphs. If ¢=n,+1 and n,=0 then n, =0 and the proof is exactly the same as the
proof leading to equation (4.12). O

The last two results show how the free energy of embeddings with specified topology
in Z” are related to the free energies for saws and saps in the case that the embeddings
are unrestricted. We now try and determine if there is a corresponding relationship in
the special case that the embeddings are uniform. We must, however, first determine
the growth constant for uniform embeddings of a graph 7 in Z>

For any 7€ %,, let g7(n, 7) be the number of uniform embeddings of 7 in Z* with
n edges in each branch. While the free energy for the uniform case will be shown to
be dependent on 7 we find that the growth constant of g'(n, 7) is independent of .
This gives a new result for d =2 which is analogous to corollary 2 for d = 3; however,
the proof of this resuit is considerably different from the proof of coroiiary 2.

Theorem 4. 1If re 4,, N=nf—c+1, then
lim N7'log g*(n, M) =k, {4.21)

where if 7 is not bipartite the limit is taken only through even values of a.
Proof. For = w or 7= 7 the result follows from equations (2.1) and (2.2) respectively.

As in the proof of theorem 1, we again consider the case that 7 is not bipartite
first. For 7 # w, 7r and 7 not bipartite, the proof basically consists of using an embedding
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of 7 with properties (i)-(iii). This embedding can be made so that it is uniform and
then a lower bound for g*(n, 7) is obtained by concatenating walks in wedges to the
vertices of 7 in the line x, =k to create a new embedding of 7. An upper bound is
obtained using independently embedded w graphs,

Consider an embedding of 7 in Z* satisfying the properties (i)-(iii). The line x, = k
cuts every branch of 7 exactly twice. Label the branches of this embedding arbitrarily
with the integers 1,...,f and let m; be the number of edgcs in the ith branch. Note
that we can easily assume that the are even and divisible by 4 (if not just subdivide
each edge of the lattice twice). Let m* = max;{m;} and m, =min;{m;}. If m*=m,, do
nothing. Otherwise, at each vertex of the ith branch in the line x, =k insert a walk
which has m* — (m, + m;}/2 steps as follows {#,, {(m™* — m;/4)[4,, 4,, ], (m* —2m,+
m; —4/4)it,}. This results in a uniform embedding, 7, of 7 in Z? with each branch
having 2m™* —~ m,, edges and such that the line x, = k cuts each branch exactly twice.

There are hence 2f vertices of T in the line x, = k, label these vy, . . ., v2., according
to the value of their x, coordinates such that v, has the smallest x, coordmate.

Given any integers x=0 and j=0, define a (j; x)-ladder to be the unique (j+
1)x-saw which starts at the origin, goes j steps in the x, direction, one step in the x,
direction, and then repeats this pattern a total of x times. Define a (j; x)-tooth to be
the unique 2(j+ 1)x-saw which starts at the origin, goes one step in the x, direction,
goes j steps in the x, direction, one step in the x, direction, then j steps in the —x,
direction, and repeats this pattern at total of x times. Hence a {j; x)-ladder is contained
ina (j,j+1,j+1)-wedge and ends at the vertex (x, jx) and a {j; x)-tooth is contained
in a slit of height j and ends at the vertex (2x,0).

Let ch™2= Al MZ(O)—Z',; L eiM2 (see equation (3.9)) be the number of rooted
n-saws in Wh,. Let ¢*=3%_, c},"”. Equation (3.11) gives

lim n™" log ¢ = k. (4.22)

no-x0

Given an integer A there exists an M such that
1,2
ehMaz I (4.23)
n
Since there are ([M/2]+1)([M/2]+1) sites in W}, M =+a. Given an integer 7
such that vA>2f—1 and hence M=2f-1, fix an M as in equation (4.23). Let
Cps =2Mf(2f+1). Now, given any eveninteger n = 2C), +2m* ~ m, there exist positive
integers p and g such that n=2C,, +2pii+2m* —m,+2q. We can now construct a
uniform embedding of 7 with n edges in each branch as follows. (This construction
was suggested by Madras (1991).) To do this first split T into two parts by dividing
it along the line x, = k and letting v} be the vertex v; in T", the part of T to the left
of x, =k, and v} be the vertex v; in T®, the part of T to the right of x, = k (any edges
in the line x, = k appear only in T®). Translate T® so that v} = o[+ [(4f+p) M + q]ii,
for each i
Concatenate a (j; M)-ladder to v} and concatenate a (j; M)-ladder reflected
through the x, axis to v}}, for 2f — 1= j = 0. The end points of the two (j; M)-ladders
can now be connected by concatenating a sequence of (I; M)-tooth walks, I=2f—1,

2f—2,...,0, [#j then concatenating p A-saws each in W}, and finally concatenating
a ctato tha diraction. The result is a uniform embeddine of 1 with the snecified
‘j Dl\-pa lll LlI.C .)\.1 MM VWLIULL, e 1WOUWIL 10 O MILIIAFRE IR SrRIIUAIRL LI g R/ d LR LW SRRV

number of edges in each branch. Figure 2 illustrates the case f=2, M =4, g=0 and
p>6. The above construction implies that

[ck™?]? < g*(2Cy +2pA+2m* —m,+2q, 7} =g"(n, 7). (4.24)
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Figure 2. This figure illustrates how the wedges W}, are concatenated to the ; for the
constructions in theorem 4, The case that M =4, ¢ =0 and p>6 is shown.

Taking logarithms, dividing by N =jfn—c+1, fixing # and letting n->20 in equation
(4.24) yields

A ' log ckM =< lim inf N "logg*(n, v). (4.25)

Using equation (4.23) and letting /i - o0 leads to

liminf N"'log g*(n, r) = x,. (4.26)

An upper bound in terms of independently embedded w graphs can then be used
to obtain equation {4.21).

Suppose 7 is bipartite. Given any planar representation of r, label the vertices of
7 with the two labels ieft and right so that no edge joins two vertices with the same
label. Draw a straight line so that all the right vertices are to the right of the line and
now ‘pull’ the left vertices {allow the Iength of the edges to grow while maintaining
the planarity of the embedding) so that they are all to the left of the line. This can be
done so that the line cuts every edge of 7 exactly once. By replacing the edges of this
embedding by appropriate walks it is possible to obtain an embedding of = in H® so
that for some k the line x, = k cuts each branch of the embedding exactly once. Now
we can proceed just as abave only now #i can be either even or odd and there are only
f vertices in x, =k The upper bound can again be obtained using independently
embedded w graphs and thus the proof is complete. O

Now that we know what the growth constant for the uniform embeddings of a
graph t is we can next study the associated free energy. We first review the result of
Whittington and Soteros for uniform stars and then use their result to get a result for
general 7.

Let the tree graph in %, with one vertex of degree f and f vertices of degree 1 be
called the f-star graph and denote it by oy. In two dimensions the maximum number
of vertices that a uniform embedding {n edges in each branch) of oy (f=3 or 4) can
have in L? is 2n-+1, while the total number of vertices is N=nf+1. For any re &4,
let g*(n, m, v} be the number of uniform embeddings of 7 in H? with n edges in each
branch and m + 1 vertices in L%, m =0, Thus, from the argument of Whittington and
Soteros (1991), we have the following.
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Lemma 5. For f=3 or 4 and N =nf+1 let AN(oy, 8)=2220 g*(n, m, ay) ™.
max(xz, 28/f) <lim inf N"* log Ax(c, )

<lim sup N 7' log AN{oy, BY<¢Vmax(k,, k,+28/1). (4.27)

n—=0oo

Using lemma 5 and theorem 4 we obtain the following result.

Theorem 5. {Uniform embeddings) Forany 7¢ 4,,let Ay(7, 8) =27, 8" (n, m, 7) ™,
N=nf-c+1. Let r=f—-c+n;+n,+1/2f if 7 has a cut edge and let r=
min{f—c+ n,+ ny+1/2f, 3} otherwise. Note that r <1if 7 # w. Let s = 1 if 7 is bipartite
and s =2 otherwise. Then

max(xz,:g,) <lim inf N7 log AN(~, B)

R-»Q0

<lim sup N~ 'log A}(7, B) <max(k,, k,+ r8). (4.28)
If 7 is not bipartite the limits are taken through only even values of n. Therefore the
free energy for 7# » is not equal to A”{(B).

Proof. Consider 7€ 4, with f branches, cyclomatic index ¢ and n; vertices of degree
J,i=1,3, 4. If 7= w then equation (2.8) gives the result. If + = 7 then equation (4.10)
gives the result.

Assume 7 # @ and 1 # 7, 1.e. either n; > 0 or n, > 0. Consider any uniform embedding
n of 7 in H” with n edges in each branch and m vertices in L*. If # is odd then remove
the middle edge of every branch of . This results in n, w graphs each with (n —1)/2+1
vertices, n; uniform 3-stars each with 3{n—1)/2+1 vestices and n, uniform 4-stars
each with 2n —1 vertices. The w graphs can have at most (n—1)/2+1 vertices in L’
and the 3-stars and 4-stars can have at most n vertices in L° Hence m=<
min+1)/2+ (st ndn=n(f—c+nm+n,+1}/2+n,/2=m*(n). If nis even then cut
each branch at the middle vertex to create n, w graphs each with n/2+1 vertices, n,
uniform 3-stars each with 3n/2+ 1 vertices and n, uniform 4-stars each with 2n+1
vertices. The  graphs can have at most n/2+1 vertices in L? and the 3-stars and
4-stars can have at most n+ 1 vertices in L°. Hence m=<n,(n+2)/2+(n;+nn+1)=
n(f—c+ny+n,+1)/2+n+ ny+nyg=m*(n).

Hence for =0

AN(r, By =g (n, 7). (4.29)
For g <0
AL, B)<g"(n, 1), (4.30)

In the special case that T does not have a cut edge AN(7, 8)= Ay(7, B) and equation
(4.12) imply that

lir’{} sup N7 log A% (7, B) < B(B) =max{x,, ks + B/2). (4.31)

Hence taking logarithms, dividing by N and letting n go to infinity in equations (4.29)
and (4.30) combined with equation (4.31) gives the result.
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The construction used in the proof of theorem 4 gives the lower bounds. In particular,
consider a uniform embedding of r constructed as in figure 2 however with # = M, we
thus get

ePMTaTM) < g™ (m, pM + My, 7) # MM < AL (n, 7) (4.32)

where n=s5Cy+spM+2m*—m, +sq (s=1 if 7 is bipartite and s=2 otherwise),
N=nf-c+1and My+Mp+g+1 is the number of vertices of the embedding in L.
Taking logarithms, dividing by N and letting n go to infinity (with M fixed) in equation
(4.32) gives the B/sf factor in the lower bound.

On the other hand, it is possible to obtain a uniform embedding of r constructed
as in figure 2 with M satisfying equation (4.23) and so that the embedding has exactly
two vertices in L% In this case equation (4.26) becomes

ko<liminf N"'log g"(n, 1, 7). (4.33)
Note that
gt (n 1, 1) ef = AL (7, B). (4.34)

Therefore taking logarithms, dividing by N = nf—c¢+1 and letting n go to infinity in
equation (4.34) combined with equation (4.33) gives the x, factor in the lower bound.

A result similar to theorem 5 can be obtained for uniform lattice animals in H*®
restricted to having cyclomatic index ¢ and n, vertices of degree i, i=3, 4,
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