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Adsorption of uniform lattice animals with specified topology 
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Abstract. We study the effects of topology on the free energy of uniform lattice animals 
interacting with a surface. Topology is specified by fixing an abstract graph, T, and the 
littice animils considered are embeddings of i in the square and simple cubic lattice. We 
prove that such embeddings in the simple cubic lattice and interacting with a plane have 
the same free energy as self-avoiding walks independent of the choice of i and independent 
of whether or not the embeddings are restricted to be uniform. For embeddings in the 

that for walks depending on whether J has a cut edge. Further restricting the embeddings 
to be uniform forces the free energy to be different from that for walks for all T (except 
the T corresponding to walks) and we obtain bounds on the free energy which depend on 
the number of branches, cycles and vertices of degree 3 and 4 in the graph. 

sqnare lattice a x !  in!eracti"g Wi!h a line, we prove !ha! Ih. Free energy may differ from 

1. Introduction 

In 1979 Lubensky and lsaacson proposed a lattice animal model of randomly branched 
polymers with excluded volume. A lattice animal is any finite subgraph of a lattice. 
Since 1979 interest has developed in modelling branched polymers with specified 
topologies using lattice animals (Miyake and Freed 1983, Gaunt er al 1984, Lipson er 

effects of branching on the properties of polymers with excluded volume. Generally 
the approach is to find relationships between a model of a polymer with specified 
topology and the self-avoiding walk (SAW) model for linear polymers. In particular, 
Gaunt ef nl (1984) have proved that the growth constant for lattice animals on the 
d-dimensional hypercubic lattice with cyclomatic index c and nh vertices of degree k 
(k = 3 , .  , . , 2 d )  is the same as that for SAWS. Most recently Soteros er al (1991) have 
proved the more general result that the growth constant for lattice animals which have 
a fixed topology specified by a graph (i.e. lattice animals homeomorphic to a fixed 
abstract graph) is also the same as that for SAWS. 

Similarly, lattice animals can be used to study uniform branched polymers (every 
branch is composed of the same number of monomers). Soteros and Whittington (1989) 
have proved that uniform brushes have the same growth constant a s  SAWS. However, 
the more general question of whether uniform lattice animals homeomorphic to a fixed 
abstract graph have the same growth constant as SAWS remained open. In this paper 
it is proved that for two and three dimensions such lattice animals d o  have the same 
growth constant as SAW$. These results cannot be proved by extending the uniform 
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brush proof; instead a new general argument is required. The result in three dimensions 
is a corollary of a result we obtain for uniform branched polymers interacting with a 
surface. The proof of the result in two dimensions is separate. 

Hammersley er al (1982) have studied the properties of the free energy of  SAW^ 

interacting with a surface. Recent results indicate that at least when the dimension of 
the lattice is greater than 2, uniform lattice animals with specified topologies and 
interacting with a surface have the same free energy as SAWS interacting with a surface. 
This has been proved for uniform stars (Whittington and Soteros 1991), uniform 
brushes (Zhao and Lookman 1991a) and k-loops (Zhao and Lookman 1991b). In this 
paper we prove that it is true for uniform lattice animals with any specified topology. 
The proof of this for any topology is not an extension of the proof for the uniform 
star, uniform brush or uniform k-loop case. Instead it is first necessary to obtain new 
results about self-avoiding polygons (a model of ring polymers) in wedges. Then these 
results are combined with some results from graph theory to obtain the final general 
result. The concatenation arguments used in the proof are general enough that they 
can be applied to almost any system represented by a finite number of non-intersecting 
subgraphs of a regular lattice with dimension at least 3. In addition most previous 
results concerning the growth constant and adsorption free energy of branched polymers 
with specified topology can now be obtained as corollaries of this result. 

In two dimensions, Whittingtou and Soteros’s results for uniform stars indicate 
there is a marked difference between the behaviour of uniform branched polymers 
interacting with a surface when compared to the behaviour of linear polymers interact- 
ing with a surface. This is due to the fact that some of the branches of the polymer 
are prevented from having any contact with the surface by other branches of the 
polymer. We explore the ZD case further in this paper. Here it is shown that the result 
for uniform stars generalizes to any uniform branched polymer with specified topology, 
i.e. there is a shading effect which causes the interaction of the polymer to be different 
from that of a linear polymer. We prove this by obtaining bounds dependent on c, n3 
and n4 for the free energy of a branched polymer with specified topology. We also 
show that in the case that the branched polymer is not restricted to being uniform, the 
free energy of the polymer only depends on whether the specified topology of the 
polymer contains a cut edge. If the topology has a cut edge the polymer’s free energy 
is the same as that of a linear polymer’s; if it does not have a cut edge the free energy 
is the same as that of a ring polymer. In particular this implies that the free energy of 
a dumbbell-shaped polymer is different from the free energy of a polymer shaped like 
the Greek letter 0 even though c, n3 and n4 are the same for both. 

The results discussed above are presented in detail in the next three sections of 
this paper. In the first section we review the required definitions and required results 
from the theory of  SAW^. In the second section the proofs of the results concerning 
the simple cubic lattice are presented. In the third section the square lattice results are 
proved. 

2. Properties of  SAW^ 

We are primarily concerned with lattice animals which are connected subgraphs of 
the square (Z’) and simple cubic ( Z 3 )  lattices. A subgraph of Z d  for d = 2 or d = 3 
is composed of lattice points, called vertices, and lattice edges. The degree of a vertex 
in the subgraph is defined to be the number of edges of the lattice incident on the 
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vertex. We also assume that on Z” a vertex has integer coordinates (x,, . . . , x d )  and 
we let U; be the j th  unit vector. 

An n-step self-avoiding walk (or  SAW) beginning at lattice point zo is an ( n  t 1 ) -  
tuple of distinct lattice points ( z o , .  . . , z,) where zi and zi+, are adjacent in the lattice, 
O S  i < n and the coordinates of zi are (xy’, , . . , xLd’). The n-SAW a is rooted if zo=O. 
For each n, let cLd’ denote the number of distinct (as (n+l)-tuples) rooted  SAWS 
in Z d ,  d = 2 or 3. Then Hammersley and Morton (1954) have shown that 

where x d  is called the connective constanf for Z d .  An n-step self-avoiding polygon (or - 
n-sAP)  is any connected subgraph of the lattice composed of n edges and n vertices 
in which each vertex has degree 2. Two  SAP^ are equivalent if one is a translate of the 
other. We write p id ’  for the number of inequivalent  SAP^ in Z d  ; pLd’ is zero if n is 
odd so we adopt the convention that n is even in any statement invoiving p ? ‘ .  
Hammersley (1961) has shown that 

Let Q represent the union of the circle graph (the connected graph with exactly 
one vertex and one edge) and the set of abstract finite connected graphs with no 
vertices of degree 2. We define a brunch point of a graph r E !!I as a vertex of degree 
greater than 2 and an endpoint as a vertex of degree 1. A branch is defined as an edge 
or set of edges either between two branch points, two end points, or a branch point 
and an end point, which does not contain any other branch or end point. 

Let !!Ik c D be the set of graphs in !!I having maximum vertex degree less than or 
equal to k. Consider T E  YZd. An embedding of r in Z d  will be any finite subgraph of 

in Z“ which is homeomorphic to r. We refer to the number ( n )  of occupied lattice 
vertices of an embedding in Z d  as the size of the embedding, and consider identical 
those embeddings which are superimposable by translation. 

Let g‘d ’ (n ,  r )  be the number of embeddings of the graph T E  Y2,, in Z d  of size n. 
For instance, if r corresponds to the circle graph we write r = T and then g‘d’(  n, T) = 0 
if n is odd, g‘”’(n,  T) =pLd’ for n even. Therefore equation (2.2) can be rewritten 

(2.3) 

where n goes to infinity through the even numbers. If r E Y2., corresponds to the graph 
with exactly two vertices, each of degree 1, and one edge, then we write T = O  and 
equation (2.1) implies 

(2.4) 

p .which is homeomorphic io ‘i. Heace eiii‘ve:&iig of in Z d  is any laitice 

, 

Iim n-I log g‘“’(n, ?r) = K,, 
n-m 

Iim n-’ log g‘”’(n, U )  = K ~ .  
n-m 

Soteros et a1 (1991) have shown that 

lim n-’ log g‘3’(n, T )  = K )  
n-m ( 2 . 5 )  

for any T E  Y6 and where n is assumed to go to infinity through even integers if 
g‘3’ (n ,  T) = O  for n odd. In general we define the limit, if it exists, 

n-’ log g‘d’(  n, r )  to be the growth constunt for r in Z“. Equation (2.5) thus 
indicates that the growth constant for any r E Y6 in Z 3  is the same as the growth 
constant for SAWS in 2’. 
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Since we are interested in modelling polymers interacting with a surface it is useful 
to review here the results that are known about models of linear polymers interacting 
with a surface. Hammersley et a/ (1982) modelled a linear polymer interacting with a 
surface using a SAW in the half-space xd 3 0  interacting with the surface xd =O.  In 
particular, let H d  represent the half-space xd 3 0 in Zd.  Let cif,!, denote the number 
of distinct rooted n-SAWs in H d  with m+l vertices in the hyperplane Ld = 
{(x,, . . . , x d ) e  Hdlxd = O } .  Define the generating function 

Hammersley et ol (1982) have shown that the limit, hereafter called the free energy, 

= "+m lim n-' log Aid ' (p )  (2.7) 

exists for all p and that 

max(Kd, K ~ - ,  +p)SA'd'(p)SmaX(Kdr K~ +p) .  (2.8) 

From this they conclude that there is a phase transition in the model (corresponding 
to adsorption) for some critical value of p, pc,  where O < ~ , S K ~  - K ~ - ~ .  

Finally, we will need to use some known results about models of linear polymers 
confined to wedges. Hammersley and Whittington (1985) modelled linear polymers 
confined to a wedge using SAWS on Z d  confined to a wedge. Define an (a, p, 7')-wedge 
for a < p  to be {(x, ,..., ~ ~ ) e Z ~ ~ O ~ ~ ~ , a x , S x , S p x , + 7 ' ) .  Note that a ( O , a , O ) -  
wedge is equivalent to a ( l / a ,  m, 0)-wedge. Hammersley and Whittington (1985) proved 
that rooted SAWS in a (0, a, 0)-wedge in Z d  have growth constant K ~ .  Define c:;: to 
be the number of rooted &SAWs in an (a, p, 0)-wedge in H 3  with m f  1 vertices in L', 
m 30, and such that O = x f " ~ x ~ ' < x $ ' "  ( i =  1,. . . , n - 1 ) .  Let A:'(&) = Z k = o  c:;: e''". 
An argument given by Whittington [ 1988) which proves that rooted  SAW^ in (0, a, 0 ) -  
wedges have connective constant K~ can be extended to prove that 

"-- lim n-' logA:" (e )=A(d ' (e ) .  (2.9) 

3. The results for the simple cubic lattice 

In this section we prove for any graph T that uniform embeddings of T in H' inter- 
acting with L' have the same free energy as  SAW^ in H' interacting with L3. To prove 
the result we start by showing that it is true for the case T = v, i.e. the case that the 
embeddings are  SAP^. -We then show that SAPS confined to certain wedges nave 
the same free energy as unconstrained  SAW^. This wedge result combined with some 
graph theory allows us to prove the result for any T. 

First we need a few more definitions. For any set S, of vertices we define the top 
(bottom) vertex as follows. First construct the subset S, c So such that the coordinate 
x, of every vertex in S, has the maximum (minimum) value over all vertices in S,. We 
then recursively construct S, c such that the coordinate xk of every vertex in S, 
has the maximum (minimum) value over all vertices in Sk-, . Let j be the smallest 
integer such that S, contains precisely one vertex, and call this vertex U, (ut,), the top 
(bottom) vertex of So. 
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Let p;,,,,(d) denote the number of distinct SAPS in H d  with a total of m+ 1 vertices 
in Ld, m a  0 (two polygons are equivalent if they are superimposable by translation). 
Let pifm(d) denote the number of distinct  SAP^ in Hd with ub in Ld and a total of 
m + 1 vertices in L ~ ,  m 0. Clearly 

and 
n 

BT"d'(p) = p;,L(d) e'"'. (3.3) 
"l=0 

Lemma 1. 

lim n-' log B:+"'(P! = lim n-' log B;'"(p) = A'3'(p) .  (3.4) 

Roo$ We note that the proof in the literature of equation (2.2) is not easily extended 

Hammersley el al (1982) showed that a rooted n-sAw (zo,. . . , z,,) in H d  with zi= 

(In other words, SAWS in H d  'unfolded' in the x, direction and 
which return to Ld at their last step have the same free energy as all  SAW^.) They 
proved this by unfolding ordinary  SAW^ so that a SAW satisfying O = X ~ ' S X ~ ~ ' < X ~ " '  
results. They then concatenated in pairs unfolded walks ending at the same vertex so 
as to form an unfolded walk which has its last vertex in L". We will refer to the resulting 
 SAW^ as (*)-walks. M Hammersley (1987) pointed out that these (*)-walks can be 
concatenated in pairs (one above Ld and the other below L d )  to form a SAP and this 
construction provides an alternative proof of equation (2.2). Analogously for d > 2, 
one can concatenate two (**)-walks (one in the quarter-space O s  xI, 0 < xd ,  0 s x2 and 
the other in the quarter-space 0 S x,, O S  x d ,  x2 S 0 )  to create a SAP with its bottom 
vertex in Ld Since (**)-walks have free energy A'"(p) this construction implies 

"+cc n-cc 

to I proof nf rqu2tlon (3.4). !ns!eId, to prove eqlll!ion (3.4) ..ve nn!e the fo!!owin- a. 

(x'" , , _ _ _ ,  x:') and satisfying O = x \ " s x ~ " < x \ " '  ( i = l ,  . . . ,  n-1) ,  O=xy'=xy' has ~ ' free energy 

s lim "-cc inf n-' log B 7 ' " ( p ) <  lim n-m inf log BT("(p).  (3.5) 

Multiplying equation (3.1) with d = 3 by epm, summing over m, taking logarithms, 
dividing by n and letting n go to infinity gives 

(3.6) 

0 

We next look at the special case of SAPS in wedges and start by making some 
definitions and extending some results about the growth constant for SAPS and  SAW^ 

in wedges to similar results for their free energies. We then prove that the free energy 
of a SAP in an (a, p, T)-wedge is A'3'(fl) .  

For 1 s M s n / 2 - 1 ,  d a 3 ,  define P Z ; ~ " . ~  to be the number of n-SAPs in the 
subset of a (0, a,0)-wedge W K  = ( ( x l ,  x2,. . . , xd)E H ~ ( O < X ,  s M, o s x , s  
min{ax,,M-x,}] such that U, is the origin, u , = ( M , O  ,..., 0, I ) ,  U,+& and U,-& 

lim sup n-' log B ~ ' " ' ( P ) s l i m  sup n-' log B ~ ' " ( P ) S A ' " ( p ) .  
"-cc n-m 

Equations (3.5) and (3.6) give equation (3.4). 
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are vertices of the polygon, m + 1 vertices of the polygon lie in Ld, m 3 1, and the only 
vertices of the polygon in the plane x2= M - x ,  are U, and ut- Gd. 

Let gz:2d represent the set of n-SAPS in W b ,  Let 

The argument of Hammersley and Whittington (1985) for SA& in (0, a, 0)-wedges can 
be extended to prove that 

Similarly, for M S n,  define c::?~ to be the number of rooted n-step SAW$ in W ;  
such that the SAW ends at ( M ,  0,. . . ,O), has m + 1 vertices in Ld. m 2 1: and x$')< 
M-x',"for i c n .  Let 

(3.9) A:M.d(&) = 1 p M , d  
".m 

m = ,  

and 

1 A P M , d ( ~ ) .  (3.10) 

The argument of Whittington (1988) for SAWS in (0, a, 0)-wedges can be extended to 
prove that 

M=l 

lim n-' log A : d ( ~ )  = d = 2,3 .  (3.11) 

For d a 3 ,  concatenating an n,-step SAP in W;% to an n,-step SAP in Wb, by 

"-m 

superimposing two vertices of each and deleting two edges leads to 

(3.12) o.M dpo.M2.d < e,M,+M d o,M,+M ,d 
PnL& n2.m2 - Pn,+n,-2,=&+m,== Pnc+n>,m:+m2. 

Kence 

(3.13) Ba.M,,d( E)Bm.M2.d m,M +Mi.d 
fit n2 ( E ) s ( n , + n 2 + 1 ) B n , + i 2  (€1. 

Further, for 0 < a < p 

PN,m-PN,m a M <  P.M (3.14) 

and hence 

B;M.d( E )  Lc_ ~ 0 . M . d  N (3.15) 

Lemma 2. Given any positive numbers a and p, let T =  [el+ 1 and a < p. Define 
pz;: to be the number of n-sAPs in an (a, p, T)-wedge in H' with ub = (O,O, 0) and 
m+ 1 vertices in L'. Let B:O(E) =Z;=,,pz:: e'"' then if either 01 or l /a  is an  integer 

(3.16) lim n-' log B:O(E) = A(')(&).  
"-m 
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Prooj Hammersley and Whittington (1985) have proved that  SAP^ in a (0, a, 0)-wedge 
have growth constant K ~ .  They concatenated polygons in snug boxes to get a lower 
bound. For this lemma, instead of a snug box we use a new construction involving 
snug (0, 8, 0)-wedges, W L .  

Let p:,: be the number of  SAP^ in a (a ,  m, 0)-wedge in H’ with ub at the origin 
and U, in the line {x2= a x , ,  x, = 1) and m + 1 vertices, m a0, in L3. We start by showing 
that such (**)-polygons have free energy A ( 3 ) ( p ) .  

Let N be such that a N  is an integer and both aN and N are even. Let M be such 
that aM is an integer. One can concatenate a polygon in the set ?J’>?: to a polygon 
in the set PL$;zy to create a polygon of size (a+ 1)N-2 which starts and ends on 
the plane x, = a x , .  The concatenation is done by rotating and reflecting the (0, l/a, 0)- 
wedge, WbG, so that it is an (a,m,O)-wedge, then reflect the (0, a,0)-wedge, W L ,  
through the xI and x, axes, and finally translate the wedges so that they intersect at 
the plane (x,, aM - x,, x3). Deleting an edge in each polygon creates one polygon of 
size (a + 1)N-2.  Two edges can be added to the top of this polygon to give a polygon 
of size (a + 1)N. The resulting polygon is in the union of two wedges (see figure l), 
W ;  and Wb%, for 1 S M s N and 1 S a M  s aN. Any SAP created this way is a 
(**)-polygon. Therefore 

p e . M , 3  llo.oM,3 < ** 
N,m, P a N . m 2  - P [ a + l l N , m , + m ,  

SP(o+l)N,mx+m2 (3.17) ++ 

and hence, for any M such that a M  is an integer 
B > M M . ’ ( ~ ) B ~ ~ M . ’ ( e ) ~  ((a+ 1 ) N +  ~)ET,+,,,(E) 

( ( U +  1)N+ I)B;:+IIN(E) (3.18) 

where 

p:,: er*= E $ * ( € ) .  (3.19) 
m=0 

A subadditivity argument shows that lima+m n- ’  log E:*(€) exists. 
Let S=max{a, l / a ) ,  so that 0<1 /8SS .  Equation (3.15) implies 

B ! $ S . M . d ( ~ ) S  B % M ’ d ( ~ ) .  (3.20) 

Figure 1. The union of a WbG and a WK wedge as 
needed for the proof of lemma 2 is shown here as 
its projection in the x ’=O plane. 
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If S = a let n = N and m = M in (3.18). If S = I / a  let n = aN and m = rrM in (3.18). 
(Note that, as long as S is an integer, m can take on all integer values between 0 and 
n/2-1.)  In either case equation (3.18) becomes 

B ~ ” . ’ ( ~ ) B ~ / . ” ” “ ‘ ~ ’ ( E )  6 ((8 + 1)n + l)BTfi:l)n(e) 

<( (S+l )n+l )B;~ , , , (E) .  (3.21) 

1 Equations (3.20) and (3.13) thus give for S an integer 

(&)I6+’< ( (a+ I ) n  + l)BTS+l,.(~) [ ;/ 6.m.3 

<((S+l)n+l)B;:,,,,(E). (3.22) 

For any n there are n / 2  - 1 possible values of m and hence there exists 0 < m* S 
1112- 1 such that 

x n / 2 - 1  ~ ‘ / 6 . ” . 3  
“ .=I  

B:’:.”’.: ( E ) a  ’. (3.23) 
n / 2 - 1  ’ 

Let m = m* in equation (3.22) and thus equation (3.23) implies 

. _il < ( ( a +  1 ) n +  1 ) f q 6 ~ , ) ” ( & ) .  (3.24) 

Taking logarithms, dividing by (S+ I )n ,  and letting n go to infinity in equation (3.24) 
gives 

(3.25) lim n-’ log B:*( E )  = A‘3’( E ) .  
n+m 

In other words, if either l /a  or a is an integer then  SAP^ which have oh at the origin 
and ut in the line {x2 = a x , ,  xj = 1) in a (a, m, 0)-wedge in H’ have the same free 
energy as  SAW^ in H’. (Equivalently,  SAP^ which have uh at the origin and ut in the 
line [x2 = a x I ,  x3 = l}  in a (0, a, 0)-wedge in H’ have the same free energy as SAWS in 
H’.)  

G i v e n n , l e t x f = k r l / a l  forsome kandassumexT~Tn/2 (p-a ) l .An(u ,p .T) -  
wedge can then contain any n-step (**)-polygon translated so that oh is at a lattice 
poiiii of i k  foim (x l ,  ax,, 0) foi Y, 2 x:. Hence as many (**)-poiygons of size rl as 
one likes can be concatenated and contained in the wedge. The (**)-polygon with 
ob= (xf, a x ? ,  0) can be connected to the bottom vertex of the (a, p ,  7’)-wedge by 
concatenating the following polygon: 

.no={i i , ,k(r~i i i2,  riiaiiil), -ii3, k(-raili,, - r i / a i w  
 et .A be the finmber of vertices in T~ and hence xc has A!z vertices in L’. 

Concatenate r (**)-polygons each with n =(a + l ) N  vertices m + 1 of which are in L’ 
and then concatenate ?io. This results in a polygon in an (a, p ,  7’)-wedge with A+ m 
vertices, A/2+ rm of which are in L’. Hence 

(3.26) “ 0  ++ 
[ P ~ , : * m l r ~ ~ ~ ~ t A , ~ m - I + A / 2 ~ P ~ ~ + A . ~ m ~ i + A / 2  

and by Holder’s inequality 

[ B z * ( e ) ] ‘ S  ( n +  I)‘-’ 1 (p:,:*m)re”m. 
m=0 

Thus equations (3.25). (3.4), (3.26) and (3.27) imply (3.16). 

(3.27) 

0 
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We now show how to use the above lemma to prove that uniform embeddings of a 
graph in H' have the same free energy as SAWS in H'. We first must define how the 
polymer is attached to the surface and we consider two possible cases. In the first case 
each branch of the polymer has at least one contact with the surface (however, we do 
not specify where the contact is). In the second case the whole polymer is only required 
to have one contact with the surface and again we do not specify where the contact 
is made. The results presented here can be easily modified to apply to the case where 
the location(s) of the initial polymer contact(s) with the surface is(are) specified. 

For any T E  % let f be the number of branches in T, c its cyclomatic index and ni 
the number of vertices of degree i, i # 2. Define g++(n, m, T) to be the number of 
uniform embeddings of T in H' with n edges in each branch and m +  f vertices in L' 
such that one vertex of each branch is in L'. Define gt(n, m, T) to be the number of 
uniform embeddings of T in H' with n edges in each branch and m + 1 vertices in L', 
m 3 0. Define A;+( T,  p )  = X z = o  gtf(n, m, T )  e'"' where N = n f -  c+ 1 is the total num- 
ber of vertices in a uniform embedding of T. Define A ; ( ~ , p ) = 2 C = , , g + ( n ,  m, T )  e@". 

Note that the result of Hammersley et a/ (1982) is for SAWS rooted at the origin. 
We will need to show that their resu!t also applies to undirected  SAW^ (i.e. embeddings 
of T = w )  not necessarily rooted at the origin but with at least one vertex in Ld. In fact 
it is straightforward to obtain upper and lower bounds for g'( n, m, o) = g"( n, m, w )  
in terms of ci:k and such bounds lead to a proof of the following lemma. 

Lemma 3. 

lim N-' log AG+(w, p )  = lim N-'  log A;(w, p )  = A'"(p) (3.28) 
"+'c "+cc 

where N = n + l .  

Now we can obtain the main result of this section. 

Theorem 1. For any T E  %,, 
lim N-' log A ~ ( T ,  p )  = A"'(p) 
"-cc 

(3.29) 

with N = nf - c +  1 and where if T is not bipartite (two-colourable) the limit is taken 
through even values of n only. 

ProoJ From lemma 4.1 in Soteros et a /  (1991), there exists an embedding of a graph 
T in 2' if and only if T E fZ6. Furthermore, since SAPS in H d  must have an even number 
of edges a graph r e  V6 can have a uniform embedding in H' with n edges in each 
branch, n odd, if and only if T has no cycles of odd length. Thus T has a uniform 
embedding in H' with n odd if and only if T is bipartite (two-colourable) by Konig's 
theorem (see e.g. Roberts 1984). We first consider n even and prove equation (3.29) 
assuming the limit is taken only through even values of n. This will prove the theorem 
for the case that T is not bipartite. Then we consider a construction which is only valid 
for T bipartite and which allows us to prove the theorem for bipartite T. 

Regardless of whether n is even or odd, an upper bound for A;+(T, p )  can be 
obtained using independently embedded w graphs. Thus we focus on obtaining a lower 
bound. 

In order to obtain a lower bound for Ai,'(., p ) ,  we construct uniform embeddings 
of T in H' with n edges in each branch. If n is even the construction consists of first 
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finding an embedding of T satisfying certain properties. Then we concatenate polygons 
in wedges to the embedding of T to create new embeddings of T. 

A modification of the proof of lemma 4.1 in Soteros et a/  (1991), allows us to show 
that given any T E  g6 there exists an embedding of T in Z’ with the following properties: 

(i) exactly one edge of each branch of 7 lies in the rightmost (maximum x,- 
coordinate) plane, say xI = k, of the embedding. These rightmost edges lie in the line 
x 3 = o , x , = k , x , ~ o ;  

(ii) each branch has an even number of edges (just divide each existing edge on 
the lattice into two edges); and 

(iii) the edges in the line x3 = 0, xI = k are at least f edges apart, where f is the 
number of branches of T. 

Given any T E g6 find an  embedding 7 of T in Z1 satisfying these three properties. 
The edges of 7 in the rightmost plane are of the form {U, U + C2}.  Represent such an 
edge by the vertex U. Now label the vertices U, representing edges, and the vertices of 
degree 1 in the rightmost plane of 7 with the numbers 1 , .  . . , f i n  an order that increases 
with their x2 coordinates. This labelling also gives a labelling of the branches of 7. 

Suppose 7 has M, edges (note that M, will be an even number because of the 
subdividing of the lattice) in the ith branch and m? vertices (not including branch 
points) in L’. Let m, be the number of branch points in L1. 

Divide the quarter-space to the right of 7) into f disjoint wedges. Place a (0,  1,O)- 
wedge at u I ,  a (1,2,2)-wedge at u 2 , . .  . , a  ( i ,  i + l ,  i+l)-wedge at u c + ,  ,... , and a 
(f-] , if)-wedge at U,. 

Concatenate to U, an ( n  - M, +2)-step SAP in the ith wedge which visits L’ m, + 1 
times and contains the edge tuc,  U, + C2}. Delete the edge (U,, U, + C2J. If U, is a vertex 
of degree 1, also delete U, + C, and the edge containing it. This creates an embedding 
of T with n steps in each branch and with m+f=m,+Z;’=, (m?+m,)  vertices in L3. 
Thus 

Multiply both sides by e”~-~”’,, sum over 1 S m, S ( n  - M, +2) for i = 1,. . . , A  take 
logarithms of both sides, divide by N = nf- c + 1 and let n go to infinity. Lemma 2 
and equation (3.30) then imply 

A(”(p)<l im inf N-l logAL+( .r ,p) .  (3.31) 

For an upper bound, we fix a labelling of the branches and vertices of T and then 
note that each labelled uniform embedding of T with n edges per branch and m +f 
vertices in L’ (at least one in each branch) can be separated into fn-step w graphs 
(each with at least one vertex in H’)  so that the number of vertices in L’ adds to m. 
Since the number of ways to label the branches and branch points of an embedding 
of T is bounded above by f!2< this gives 

”-- 

I 

g++(n, m, T )  s f ! P  1’ n g+(n, m,, w ) .  (3.32) 

The prime on the summation indicates that the sum is over O S  m, S m for i = 1,. . . , f 
such that Z:-l m, = m. Hence equation (3.28) implies 

m/ , - I  

lim sup N-’logAL+(‘, p ) sA”’ (p ) .  (3.33) 
“-m 
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Thus the theorem is proved in the case that the limit is taken only through even values 
of n, i.e. for T which are not bipartite. 

Suppose now that T is bipartite. This means that we can label the vertices of T with 
two labels (high and low say) so that no two vertices having the same label are joined 
by an edge in T. Let nL be the number of low vertices and hence f - c + 1 - nL is the 
number of high vertices. Arbitrarily place the low vertices along the line x3 = 1, xI = 1 
so that their x2 coordinates differ by at least 7. Given an integer r, place the high 
vertices arbitrarily along the line x1 = r, x, = 1 so that their x2 coordinates differ by at 
least 7. Since all branches of T are between a low vertex and a high vertex, clearly r 
can be chosen so that an embedding of T in H 3  can be obtained by adding edges to 
join appropriate low and high vertices. Furthermore, this construction can be done so 
that there exists a plane x3 = j which intersects each branch of the embedding exactly 
once and so that the embedding is to the left of the plane x, = 1 and so that the number 

f vertices of T' in the line x, = j ,  x, = 1,  label these U,,, . . . , U,-, according to the value 
of their x2 coordinates such that uo has the smallest x2 coordinate. This labelling also 
provides a label:ing for :hi branches of T'. Vie can TIOW concatenate a SA? :o each 
edge U, + U^, to create a new embedding 9 of T with properties (i) and (iii) as above 
but now with an odd number of edges in each branch. The proof now proceeds exactly 
as in the non-bipartite case except that now n and the M , ,  i = 1 , .  . . ,fare odd numbers. 

U 

n F  n A n n e  in nn-h h n - c h  :c - A A  P - l l  +hn -nr..l+:..n --h-,4A:..m -F - T' mare nC_ ha...-- 
"L CY6.A .I. 1mL11. V.-LllnI La """. --U L l l r  1 C " " L L L " 6  . , .1LLYcuu"lg U1 I 1 . L l l L l C  a,Ci 1LZLlLG 

Thus the theorem is proved for all T. 

\ 
Corollary 1. For any 7 E 96, 

lim N-' log A;(T, p )  = (3.34) 
n-m 

where if T is not bipartite the limit is taken through even values of n only 

Proof: To prove this corollary, first note that g++(n, m, T )  S g'( n, m + f - 1 ,  T )  and 
hence equation (3.29) implies 

(3.35) A'3'(p)slim inf N-'  log A+,(T, p )  

with the required restriction on n if T is not bipartite. 

fn-step o graphs. This gives the following upper bound: 

g + ( n , m , T ) s g + + ( n , m - f + l , ~ )  

To obtain an upper bound we again separate a labelled embedding of T in H' into 

-PL- -- .I_̂  _^^^_-I " ____... :-_ :..A:....."" *I-̂ . .I.̂ , ^ . .__A<. -  F^- i i lc grlilic UII  L I K  SSLUIIU >uiiiiiiaiiuii I I I Y I C ~ L T J  L I ~ L  ~ U F  J U U ~  is v v s i  v- r n , -  rri LUL 

i = l .  . . _ ,  k such that 2:=, m , = m - k + l .  Equations (2.4), (2.8), (3.28), (3.29) and 
(3.36) imply 

lim sup N-'  log A+,(T, p )  S A"'(P). (3.37) 

U 

Let g'(n, T )  be the number of uniform embeddings of T in Z 3  with n edges in each 
branch. A;(T, O)sgt(n, T ) .  An upper bound for g+(n, T )  is obtained by separating 
embeddings of T into independent w graphs. Hence corollary 1 and equation (2.1) 
give the following corollary. 

"-- 
Equations (3.35) and (3.37) imply equation (3.34). 
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Corollary 2. For any T E Y6 

lim N-l log g'( n, r )  = K' 
n-m 

(3.38) 

Consider T as defined in lemma 2 and let g+.".'(n, m, r )  be the number of uniform 
embeddings of T in an (01, p. TI-wedge in H' with ub = (0, 0, 0). n edges per branch 
and m + 1 vertices in L3. Gaunt and Colby (1990) have shown that uniform stars in a 
wedge have the same growth constant as SAWS. It is now possible to show that this 
generalizes to uniform embeddings of any graph T and in fact it is possible to prove 
.the following corollary (for details of the proof see Soteros 1991). 

Corollary 3. If either 01 or I jn  is an integer 

lim n-' log 1 gi.".B(n, m, T) esm =A'"(E) .  (3.39) 
m=0 n-m 

Let a'(n, m, c, n,, . . . , n6)  be the number of uniform lattice animals in H' with n edges 
in each branch, m + 1 vertices in L', m >O, cyclomatic index c, and ni  vertices of degree 
i 3 3. Let a"(n, m, c, n 3 ,  . . . , n6) be the number of uniform lattice animals in H' with 
n edges in each branch, m +f vertices in L' (at least one in each of the f branches), 
cyclomatic index c, and nj vertices of degree i 3 3 .  N =  n f - c + l  will be the total 
number of vertices in either case. An upper bound for a"(n, m, c, n 3 , .  . . , n6) 
(a+(n ,  m, c, n 3 , .  . . , n 6 ) )  is easily obtained as in the proof of theorem 1 (corollary 1) 
by embeddingfn-step o graphs. In addition, for any T E  Y6 such that T has cyclomatic 
index c and vertex degrees ( n 3 , .  . . , n6),  g + + ( n ,  m, T) c a++( n, m c, n,, . . . , n6) c 
a+(n,  m +f- 1, c, n 3 , .  . . , n6). Hence we obtain the following corollary. 

Corollary 4. (Zhao and Lookman 1991a) For any c and ( n 3 , .  . . , n6) 

N 

lim N-' log x a"(n, m, c, n 3 , .  . . , n6)  eam 
m=0 "-m 

N 

= lim N-' log 1 at(n, m, c, n 3 , ,  . , , n,,) ePm =A" ' (p )  
"4- m = 0  

(3.40) 

For any r E Y6, consider the number of embeddings of 7 (not necessarily uniform) in 
H' of size n, with m + 1 vertices in L', m 3 0, and denote this by g")( n, m, 7). 

Corollary 5. For any T E  Y6 

Prooj. The proof of this follows the proof of theorem 1 except now one need only 
concatenate one polygon into the quarter-space to the right of the initial embedding. 
This gives a lower bound and as usual the upper bound is obtained by separating 
embeddings into independent o graphs. 
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Let a(n, m, c, n,, . . . , n,) be the number of lattice animals in H’ with n vertices, 
m + 1 vertices in L’, m 2 0, cyclomatic index c, and ni vertices of degree ia 3. Let f 
be the number of branches. An upper bound for these is easily obtained as above by 
embedding f n-step w graphs. In addition, for any T E  Y6 such that T has cyclomatic 
index c and vertex degrees ( n 3 , .  . . , n6),  g(”( n, m, T )  s a(  n, m, c, n,, . . . , n6). Hence we 
obtain the following corollary. 

Corollary 6. For any c and ( n 3 ,  . . . , n6) 
” 

lim n-’ log 1 a(n,  m, c, n,, . . . , n6) eBm = A ‘ ” ( P ) .  (3.42) 
,“=O ”+- 

4. The square lattice results 

In the previous section, theorem 1 and corollaries 1, 5 and 6 indicate that the free 
energy for embeddings interacting with a surface in H’ is independent of the specified 
topology and independent of whether the embeddings are uniform (theorem 1 and 
corollary :) or Enrestricted (corollaries 5 and 6). Hcwever, f x  d = 2 the results are 
not independent of topology and the results for uniform embeddings are quite different 
from those for unrestricted embeddings. Since the results for unrestricted embeddings 
are easier to obtain we start this section by looking at this case and then consider 
uniform embeddings. 

First we need to determine which graphs have embeddings in Z 2 .  Since non-planar 
graphs are not embeddable in Z 2  not all graphs in Y4 have embeddings in Z 2 .  However, 
if Yp is the subset of Y4 consisting only of planar graphs then for any graph T E Yp 
there exists an embedding of T in 2’. In particular an embedding of T E  Yp can be 
constructed so that given a labelling of the branches of T with the integers 1,. . , , f 
and an integer j, 1 s j S L  there exists an embedding of T in Z2 such that: 

(i) the embedding is confined to H2; 
( i i )  the j t h  branch of T contains the top vertex of the embedding and the top 

vertex, U,, is either in L2 (if the j th  branch ends in a vertex of degree one) or U,-;, 
is in L’; 

(iii) there exists a line x, = k which cuts every branch of the embedding exactly 
twice and the vertices in this line are at least Zf edges apart, where f is the number 
of branches of T. 

If T is a tree the result can be proved following an argument similar to that of the 
proof of lemma 4.1 in Soteros er a1 (1991). For T E  Yp with cyclomatic index c > 0, we 
find the appropriate embedding as follows. There exist c edges of T, e,, . . . , e,, such 
that when they are cut the resulting graph is a tree. Let n ,  be the number of vertices 
of degree 1 in T. Consider the graph TJ E Yp which is obtained from T by cutting the 
edges e, ,  . , . , e, so that TJ is a tree and has n,  +2c vertices of degree 1. Consider any 
planar embedding of T in R2. Cutting the branches corresponding to e,, . . . , e, in the 
embedding gives a planar embedding of 7 in R2.  We use this planar embedding of TJ 

to define a labelling of the branches of TJ. The branches are labelled so that when the 
construction of lemma 4.1 of Soteros et al (1991) is applied to obtain an embedding 
of q in 2’ the resulting embedding can be extended to an embedding of T in Z2 
satisfying properties (i)-(iii) above. For more details of this construction see Soteros 
(1991). 

Now that we know how to construct an embedding for any T E  Yp we get the 
following result. 
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Theorem 2. For any T E gP 

lim n~110gg'2 ' (n ,T)=K2.  "-- (4.1) 

The proof of this follows the proof of equation (2.5) except that the lower bound is 
0 

Now, for any T E  gp, consider the number of embeddings of T (not necessarily 
uniform) in H 2  of size n with m + 1 vertices in L2, m 2 0, and denote this by g'2'(n, m, T). 
We ask how the free energy function obtained from g'2'(n, m, T) depends on T. For 
d = 3 the answer to the analogous question is that the free energy is equal to that for 
SAWS (corollary 5 )  independent of the choice of T ;  for d = 2 we find the free energy 
depends on the choice of T. 

As in the previous section, we start by looking at the case T = 71 and hence the 
embeddings are SAPS. We can prove that the free energy for  SAP^ is not always equal 
to the free energy for SAWS The proof of this is similar to that given in Whittington 
and Soteros (1991) for uniform 3-stars in Z'; however, in this case we can prove the 
existence of the free energy. 

To show that the free energy exists, let pi,m be the number of distinct poiygons in 
H 2  with m + 1 vertices in L2 two of which are ub and U,- U*,. For these polygons 

now obtained by starting with an embedding of T in Z 2 .  

(4.2) 

Bf(P)%(P)S ( n +  m +  l)B:+,(P) (4.3) 

* *  * 
P n , k P m , j  s P n + m , k + j  

and this implies that 

where B Z ( p ) = X i = , p : , ,  e'"'. Thus by the theory of subadditive functions the free 
energy function for these polygons will exist, call it B(p) ,  and hence 

B(p)  = lim 1 log B:(p). (4.4) "-- ,,,=0 

We now show that all  SAP^ with at least one vertex in L2 have free energy B(p).  
The result is the following. 

Lemma 4. 

lim n-' log B y c 2 ' ( p )  = lim n-' log B:'?'(p) = B ( p )  (4.5) 
"-cc m - c c  

with B:+") and BL@) as in equations (3.2) and (3.3) respectively. 

Prooj Since pf,,,,Spz,;(2) and since polygons with ub in L2 can be concatenated in 
pairs (according to the x2 coordinate of U,) to form polygons with ub and ut- U*, in L2 
one can show that 

Hammersley and Whittington's (1985) argument concerning  SAP^ in wedges yields an 
upper bound for all  SAP^ in H 2  in terms of SAP$ in a (0, a, 0)-wedge with ob in L2. 
Thus by extending their argument one can obtain an upper bound for p:,,,(2) in terms 
of pT,L(2). Further, since pL,L(2)sp;,,(2), it can be proved that 

" 1 2 - 1  

"-m "-- m=0 
B(p)  = lim n-I log Bz'2'(p) = lim n- '  log 1 p:,,,,(2) e'"'. (4.7) 

U 



Adsorption of uniform lattice animals 3167 

Now that we know the free energy, B ( p ) ,  exists for SAPS we can ask how it is 
related to the free energy for SAWS, A'2'(p). We show in fact that there exists Po> 0 
such that for all p a p o ,  B ( p ) < A ' 2 ' ( p )  while for p<po ,  B ( p ) = A ' 2 ' ( p ) = ~ 2 .  

For d = 2 the maximum number of vertices a polygon can have in L2 is n / 2 .  Let 
p ~ + ( 2 ) = ~ ~ ' ~ ~ ' p ~ , ~ : t , ( 2 ) .  For p s 0 ,  

p:T2(2) e2' <p:.l(2) e 2 ' s  (0) s B:+(2' (0) SPY(21. (4.8) 

The first inequality on the left comes from the fact that any polygon in H' with ub in 
L2 can be translated up by ii, and then converted into a polygon with exactly two 
vertices in L2 (add the following edges and corresponding vertices, {ub, ub-t2},  
{ U ~ - U ^ ~ , U ~ - I ? ~ + U * ~ } ,  { u , - ~ ? , + f , ,  u,+u^,}and delete{u,,u,+u^,}).Thusforall p<O, 
B ( P )  = K 2 .  

For p > 0, BL2'(0) S B'.2'(p) and 
, ( " / Z - l ) D  < n _R++I21[(?, \ v ,  $= - P n  "++[,, I-,- , ( " / 2 - 1 ' D  (4.9) 

max(tc2, p / 2 ) S B ( p ) S m a x ( ~ , ,  ~ ; + p / 2 )  (4.10) 
Thus for all p, 

and for sufficiently large p the upper bound here is smaller than the lower bound in 
equation (2.8) for A'"(p). Thus for sufficiently large p, B ( p )  <Ac2 '@) .  Furthermore, 
equation (4.10) implies that B ( p )  is non-analytic and hence there is a phase transition 
in the model for some Po,  O S  poS 2 ~ ~ .  Since the free energy for SAPS is bounded above 
by the free energy for  SAW^ po a pc and hence the adsorption temperature (proportional 

0 

Now that we have characterized the free energy for SAPS and the free energy for 
SAW$ and the relationship between them we can ask if there is a relationship between 
the free energy for embeddings of a graph T and either B ( p )  or A"'(p). The answer 
for the case that the embeddings are unrestricted is as follows. 

Theorem 3. Consider any T E  gP. Let A . ( ~ , p ) = X , = ~ g ' ~ ' ( n ,  m,7)eom. If T has a cut 

lim n-' logA.(T,p)=A(2' (p) .  (4.11) 

to 1/p) for  SAP^ is at least as low as that for SAWS. 

i edge, 

"-m 

Depending on T the limit may be taken through only even values of n. 
If T does not have a cut edge then 

lim n- ' logA, (T ,p)=B(p) .  (4.12) 

ProoJ Suppose T has a cut edge. Therefore the edge can be cut and T can be separated 

respectively, such that when they are joined T is formed. Find an embedding q, of T ,  

in Z 2  satisfying properties (i)-(iii) and so that U, = uI. Find an embedding T~ of T,  in 
Z 2  satisfying properties (i)-(iii) and so that U,= u 2 .  Suppose vI  has M ,  vertices m, of 
which are in L2 and q2 has Mz vertices m2 of which are in L2. Concatenate to uI the 
first step of an ( n  - M, - M2+ 1)-step (*)-walk starting and ending in L2 and with m + 1 
vertices in L2. Translate and reflect q2 so that u2 can be concatenated to the last step 
of the walk. The result is an embedding of T of size n with M = m ,  + m2+ m - 1 vertices 
in L2. Denote the number of n-step (*)-walks with m + 1 vertices in L2 by c:,,(2). Hence 

(4.13) 

"+cc 

inio iwu graphs, T , E  gp t 2 E  gp, of .which has a of&giez 1, aii: u2 

~ : - ~ , - ~ ~ + , , ~ ( 2 )  s g  ( 2 1  ( n ,  M, 7) .  
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An upper bound can be obtained by independently embedding walks for the branches 

Suppose T does not have a cut edge. In the special case that all branch points of 
r are degree 4 then T is Eulerian (i.e. there is a chain which goes through every edge 
of T exactly once and returns to where it started). Let n4 be the number of branch 
points of T. Each branch point will be traversed twice by the Eulerian closed chain 
and T can thus be separated into a set of cycles none of which share an edge of r. Let 
k be the number of cycles. Hence an upper bound for gi2'(n, m, T) can be obtained 
by embedding !i independent polygons such that the j th  polygon has 4 S n , c  
(n+n,-4k) vertices, O s m , s n , / 2  of which are in L2, with I;=, n,=n+n, and 
E:=, m, = m + I .  Therefore 

O f  T. 

lim sup n-' log A.(T, p )  S E @ ) .  (4.14) 
"-m 

A lower bound for gI2'( n, m, T) can be obtained in terms of polygons as in the proof 
of corollary 5. This gives 

B ( p ) s l i m  infn- ' logA,(~ ,P) .  (4.15) 
"-cc 

Equations (4.15) and (4.14) imply equation (4.12). 
Suppose that T does not have a cut edge and is not Eulerian. In this case equation 

(4.12) still holds. To prove this, note that any embedding of T in H 2  will have a 
boundary which forms a connected subgraph of T and is Eulerian. The branches not 
in the boundary cannot have more than two vertices (their branch ends) in L2. Let T 
be the set of Eulerian subgraphs of T and for any 0 define b(p)=max{eP, 1). Hence 1 

J,-Jv+I 
A.(T, P I G  E'&,(?, P ) ( / , - / q ) ! 2 J r - J v  Il d 2 ' ( m , ,  W M P )  (4.16) 

. I s 9  m, 1=2 

where the prime on the summation indicates that the sum is over all 1 s m, G n for 
i = 1 , .  . . ,/T -/, + 1 such that X$=-{T+' m, = n +/T -f, + c, - c,, /, and c, are respectively 
the number of branches and cycles in r and /, and c1 are the number of branches and 
cycles in 7. There are 

) ( L-/, 
n +/, -/, + c,- c, - 1 

terms in the primed sum. Let q* be the value of 7 for which the primed sum is maximal 
and let (mf, i = l , ,  , . ,A-/ , .+l}  be the set of m, for which the general term in the 
primed sum is maximal. We then get an upper bound on the right term in equation 
(4.16) and thus 

/.-/,.+I 
x A+(q*, P)( / , - /7 . ) !2J*-J0 .  n gi2 ' (m: ,  w)b(p). (4.17) 

Taking logarithms, dividing by n, letting n + m  and using equations (4.14), (4.1) and 
(4.10) gives 

lim n - ' l o g A , ( ~ , p ) s B ( P ) .  (4.18) 

This along with equation (4.15) implies equation (4.12). Thus the theorem is 

i = 2  

n-m 

proved. U 
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If now the topology of the polymer is only specified by the cyclomatic index and 
degree indices instead of by a specific graph T then we get the following result. Let 
a(n, m, e, n 3 ,  n4) be the number of lattice animals in H 2  with n vertices, m + 1 vertices 
in L2, m 2 0, cyclomatic index c, and n, vertices of degree i P 3. This case is analogous 
to the case discussed in corollary 6 for d =3;  however, in two dimensions the results 
depend on T. 

Corollary 7. Consider any c and ( n 3 ,  n4) and animals restricted to H 2 .  If either n,> 0 
or c # n,+ 1 and if there exists a T E Vp with cyclomatic index c and degree set ( n 3 ,  nJ, 
then 

lim n-' log a( n, m, c, n,, n4) e@" = AC2' ( P I .  (4.19) 
m-0 n-cc 

If c = n4+ 1 and n,=O then 

Iim n-' log 1 a(n ,  m, c,O, n4) eo'" = W P ) .  (4.20) 
m = o  "+cc 

Proof: The proof of this relies on the fact that if c # n4+ 1 then either n,  > 0 or n3 > 0. 
In either case there is a T E  gp with cyclomatic index c and vertex degree set (n,, n4) 
which has a cut edge. (In particular, if n ,  = 0, n4 = 0, then we must have n3 = 2 ( c  - 1)  
and f =  3(  c - 1)  and a graph which satisfies this is formed by an alternating chain of 
circles and lines starting and ending with a circle so that the simplest case (c=  2) is 
the dumbbell graph. If n, =0,  n,>O then n,=2(c-1)-2n4 a n d f = 3 ( c - l ) - n 4  and 
such a graph can be obtained from the alternating chain just described by removing 
n4 of the lines.) One can thus obtain a lower bound for a(n,  m, c, n,. n4) as in the 

graphs. If c = n4+ 1 and n, = 0 then n ,  = 0 and the proof is exactly the same as the 
U 

The last two results show how the free energy of embeddings with specified topology 
in 2' are related to the free energies for  SAW^ and SAPS in the case that the embeddings 
are unrestricted. We now try and determine if there is a corresponding relationship in 
the special case that the embeddings are uniform. We must, however, first determine 
the growth constant for uniform embeddings of a graph T in Z2. 

For any T E  4, let g'( n, T) be the number of uniform embeddings of T in Z2  with 
n edges in each branch. While the free energy for the uniform case will be shown to 
be dependent on T we find that the growth constant of g'(n, T )  is independent of T. 

This gives a new result for d = 2 which is analogous to corollary 2 for d = 3 ;  however, 
the proof o i  this resuit is considerabiy dinlerent from the proof of coroiiary 2. 

Theorem 4. If T E  %, N = n f - c + l ,  then 

p m f  af thcarcm 3. .4n @per baund is obtained using indcpendendy embedded 0 

proof leading to equation (4.12). 

lim N-'  log g+(n,  T )  = K~ (4.21) 
s-m 

where if T is not bipartite the limit is taken only through even values of n 

Proof: For T =  w or T = T the result follows from equations (2.1) and (2.2) respectively. 

As in the proof of theorem 1, we again consider the case that T is not bipartite 
first. For T # w, n a n d  T not bipartite, the proof basically consists of using an embedding 
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of T with properties (i)-(iii). This embedding can be made so that it is uniform and 
then a lower bound for g'(n, 7 )  is obtained by concatenating walks in wedges to the 
vertices of T in the line x, = k to create a new embedding of T. An upper bound is 
obtained using independently embedded o graphs. 

Consider an embedding of T in Z 2  satisfying the properties (i)-(iii). The line xI  = k 
cuts every branch of T exactly twice. Label the branches of this embedding arbitrarily 
with the integers 1, .  . . ,f and let mi be the number of edges in the ith branch. Note 
Ulal w r  Call r;l l>rr)r  l l a n v l u G  L I I ' l L  L L l C  r r q  P I S  C " = u  a1.u UIYI>IUIC:  uy + (11 l,"L,"S' S""UI","t: 

each edge of the lattice twice). Let m* = max,{mj) and m, = min,(m;}. If m* = m,, do  
nothing. Otherwise, at each vertex of the ith branch in the line x - k insert a walk 
which has m*-(m,+m;)/2stepsasfollows{li,,(m*-m~/4)[li2, I?,, -U& (m*-Zm,+ 
mt-4/4)G,}. This results in a uniform embedding, T, of T in Z 2  with each branch 
having 2m*- m, edges and such that the line xI = k cuts each branch exactly twice. 

There are hence Zfvertices of T in  the line x! = k; label these U,;. . . U?,<_! according 
to the value of their x2 coordinates such that U, has the smallest x, coordinate. 

Given any integers x S O  and j >  0, define a (j; x)-ladder to be the unique ( j+ 
1)x-SAW which starts at the origin, goes j steps in the x2 direction, one step in the x, 
direction, and then repeats this pattern a total of x times. Define a (j;  x)-tooth to be 
the unique Z ( j +  1)x-SAW which starts at the origin, goes one step in the x, direction, 
goes j steps in the x2 direction, one step in the xI direction, then j steps in the -x2 
direction, and repeats this pattern at total of x times. Hence a ( j ;  x)-ladder is contained 
ina ( j , j+ l , j+ l ) -wedgeandendsa t  thevertex (x,jx)anda(j;x)-toothiscontained 
in a slit of height j and ends a t  the vertex (2x,O). 

Let C ~ ~ . ~ = A ~ ~ , ~ ( O ) = Z ~ = ,  c:;? (see equation (3.9)) he the number of rooted 
 SAW^ in W h .  Let c;  =X;=,,C!,'~,~. Equation (3.11) gives 

(4.22) 

~ 

.I.... ... ̂ ^"_ "^^.._~ +I.̂. +l.̂ - - - ~  ~ . . ~ -  .̂.A >:..:":L,* L.. 1 ,:'---a :__^.-..L.l:..:>. 

! -" 

1 2  

lim n-' log cy2= K ~ .  

Given an integer 6 there exists an M such that 
CL.> 

f ? '  

h m  

c k M 2 > L  (4.23) 

Since there are (LM/2] + l ) ( [ M / Z ] + l )  sites in W h ,  Mas. Given an integer f? 
such that f i > 2 f - 1  and hence M S 2 f - 1 ,  fix an M as in equation (4.23). Let 
C ,  = ZMf(2f + 1). Now, given any even integer n 3 2CM + 2m* - m, there exist positive 
integers p and g such that n=2CM+2pf?+2m*-m,+2q. We can now construct a 
uniform embedding of T with n edges in each branch as follows. (This construction 
was suggested by Madras (1991).) To d o  this first split T into two parts by dividing 
it along the line x, = k and letting U: be the vertex U! in TL, the part of T to the left 
of x, = k, and U: be the vertex U, in TR, the part of T to the right of xI = k (any edges 
in the line x, = k appear oniy in r"). Transiate i" so that U:= u~+i i4f+p) l i i+qju^ ,  
for each i. 

Concatenate a ( j ;  M)-ladder to U," and concatenate a (j; MI-ladder reflected 
through the x2 axis to up, for 2 f -  1 2  j 3  0. The end points of the two (j; M)-ladders 
can now be connected by concatenating a sequence of ( I ;  M)-tooth walks, I = 2 f  -1, 
2 f - 2 , .  , . , 0, I #  j then concatenating p <-SAWS each in W h  and finally concatenating 

number of edges in each branch. Figure 2 illustrates the case f = 2, M = 4, g = 0 and 
p Z 6 .  The above construction implies that 

(4.24) 

:- +ha - rl:rpr+i-.. Tho r.r..lr Zr  II nsnifnrm 0mhdrl;nn ,4 with the c n . = r i f i d  9 ",cy" 111 ,,,c nl "..L.,.L.".I. .,,r . b O Y 1 1  I., Y v .... "La.. '."Y.,""...6 "1 ...I.. ...- "YVV....," 

[ ~ ~ " ~ ~ ] l " " s g + ( ~ C , , ,  + 2 p f ? + 2 m * -  m,+2q, T) = g + ( n ,  7). 
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Figure 1. This figure illustrates how the wedges W h  are concatenated to the vi far the 
constructions in theorem 4. T h e  case that M =4 ,  q = O  and p > 6  is shown. 

Taking logarithms, dividing by N - f n  - c +  1, fixing n* and letting n +oo in equation 
(4.24) yields 

n^-' log c:M.*slim inf N-'  logg+(n ,  7). (4.25) 
"a- 

Using equation (4.23) and letting n^+m leads to 

Iim inf N-' log g + ( n ,  T) K ~ .  (4.26) 

An upper bound in terms of independently embedded o graphs can then be used 
to obtain equation (4.21). 

Suppose T is bipartite. Given any planar representation of T, label the vertices of 
T with the two labels left and right so that no edge joins two vertices with the same 
label. Draw a straight line so that all the right vertices are to the right of the line and 
now 'pull' the left vertices (allow the length of the edges to grow while maintaining 
the planarity of the embedding) so that they are all to the left of the line. This can be 
done so that the line cuts every edge of T exactly once. By replacing the edges of this 
embedding by appropriate walks it is possible to obtain an embedding of T in H 2  so 
that for some k the line x, = k cuts each branch of the embedding exactly once. Now 
we can proceed just as above only now 8 can be either even or odd and there are only 
f vertices in x, = k. The upper bound can again be obtained using independently 

U 

"-- 

embedded o graphs and thus the proof is complete. 

Now that we know what the growth constant for the uniform embeddings of a 
graph 7 is we can next study the associated free energy. We first review the result of 
Whittington and Soteros for uniform stars and then use their result to get a result for 
general T. 

Let the tree graph in WP with one vertex of degree f and f vertices of degree 1 be 
called the f-star graph and denote it by up In two dimensions the maximum number 
of vertices that a uniform embedding ( n  edges in each branch) of U, (f = 3 or 4) can 
have in L2 is 2n + 1, while the total number of vertices is N = nf+ 1.  For any T E %, 
let g'(n, m, T) be the number of uniform embeddings of T in H2 with n edges in each 
branch and m + 1 vertices in L2, m 2 0. Thus, from the argument of Whittington and 
Soteros (1991), we have the following. 
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Lemma 5. For f =  3 or 4 and N = nf+ 1 let A;(u,, p )  = X',"='d g'( n, M, U,) e@'" 

max(K2,2p/f)Slim inf N-'  l ogA; (u / ,p )  
n-m 

S l i m  s u p N ~ ' l o g A + , ( u / , P ) s ~ V m a x ( ~ , , ~ ~ + 2 p / f ) .  (4.27) 
n-m 

Using lemma 5 and theorem 4 we obtain the following result. 

Theorem 5. (Uniform embeddings) For any T E  g,,, let A;( T,  p )  = X>=o g'( n, m, T )  epm, 
N = n f - c + l .  Let r=f -c+n ,+n ,+ l /Zf  if T has a cut edge and let r =  
min{f- c +  n,+ n,+ 1/2f; $} otherwise. Note that r < 1 if T # w. Let s = 1 if T is bipartite 
and s = 2 otherwise. Then 

N-l  log &(T, p )  

s l i m  sup N - ' l o g A + , ( ~ , p ) S m a x ( ~ ~ ,  ~ ~ + r p ) .  (4.28) 
"-- 

If T is not bipartite the limits are taken through only even values of n. Therefore the 
free energy for T #  w is not equal to A"'(p). 

Proof: Consider T E  ?I,, with f branches, cyclomatic index c and n, vertices of degree 
j, j = 1,  3,4. If T = w then equation (2.8) gives the result. If T = TI then equation (4.10) 
gives the result. 

Assume T # w and T # TI, i.e. either n, > 0 or n4> 0. Consider any uniform embedding 
7 of T in H 2  with n edges in each branch and m vertices in L2. If n is odd then remove 
the middle edge of every branch of q. This results in n ,  w graphs each with ( n  - 1)/2+ 1 
vertices, n, uniform 3-stars each with 3(n  - 1)/2+ 1 vertices and n, uniform 4-stars 
each with 2n - 1 vertices. The w graphs can have at most (n - 1)/2+ 1 vertices in L2 
and the 3-stars and 4-stars can have at most n vertices in L'. Hence m s  
n , ( n + l ) / Z + ( n , +  n,)n = n( f - c +  n,+ n,+ 1)/2+ n , / 2 =  m * ( n ) .  If n is even then cut 
each branch at the middle vertex to create n ,  w graphs each with n / 2 +  1 vertices, n, 
uniform 3-stars each with 3n/2+ 1 vertices and n, uniform 4-stars each with 2n  + 1 
vertices. The o graphs can have at most n / 2 + l  vertices in L2 and the 3-stars and 
4-starscan haveatmost n + l  verticesin L2. Hence m s n , ( n + 2 ) / 2 + ( n , + n , ) ( n + l ) =  
n(f - r + n 3 + n , + l ) / 2 + n , + n , + n , =  m*(n) .  

Hence for p Z 0 

~ ; ( ~ , p ) s g + ( n ,  T )  e@"'"). (4.29) 

F o r p < O  

AXT,  p )  7) .  (4.30) 

In the special case that T does not have a cut edge A;(T, p ) S A N ( ~ , p )  and equation 
(4.12) imply that 

lim sup N-'logA+,( .r ,P)SB(P)Smax(K,,  ! r 2 + p / 2 ) .  (4.31) 

Hence taking logarithms, dividing by N and letting n go to infinity in equations (4.29) 
and (4.30) combined with equation (4.31) gives the result. 

N - m  



Adsorption of uniform lattice animals 3173 

The construction used in the proof of theorem 4 gives the lower bounds. In particular, 
consider a uniform embedding of T constructed as in figure 2 however with n' = M, we 
thus get 

e S ( M p + q + M ~ ' ~ ~ g t ( n , p M + M u ,  T )  eS(MpfqfMo)sA+N(n, 7 )  (4.32) 
where n = s C M + s p M + 2 m * - m , + s q  (s=l if T is bipartite and s=2 otherwise), 
N = nf - c + 1 and Mu+ M p  + q + 1 is the number of vertices of the embedding in L2. 
Taking logarithms, dividing by N and letting n go to infini!y (with .M fixed) in equation 
(4.32) gives the p / s f  factor in the lower bound. 

On the other hand, it is possible to obtain a uniform embedding of T constructed 
as in figure 2 with M satisfying equation (4.23) and so that the embedding has exactly 
two vertices in L2. In this case equation (4.26) becomes 

K,Clim inf N-' log g+(n, 1, T ) .  

g + ( n ,  1, r )  e@ s AL(r, p). 

(4.33) 
n+cc 

Note that 
(4.34) 

Therefore taking logarithms, dividing by N = nf- c + 1 and letting n go to infinity in 
equation (4.34) combined with equation (4.33) gives the K~ factor in the lower bound. 

A result similar to theorem 5 can be obtained for uniform lattice animals in H 2  
restricted to having cyc!on...tic index c and Zi vertices of degree i, i = 3,4. 
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